Advertisement

Journal of Fusion Energy

, Volume 29, Issue 1, pp 94–99 | Cite as

Pinch Current and Soft X-Ray Yield Limitations by Numerical Experiments on Nitrogen Plasma Focus

  • M. Akel
  • Sh. Al-Hawat
  • S. Lee
Original Paper

Abstract

The modified version of the Lee model code RADPF5-15a is used to run numerical experiments with nitrogen gas, for optimizing the nitrogen soft X-ray yield on PF-SY1. The static inductance L 0 of the capacitor bank is progressively reduced to assess the effect on pinch current I pinch. The experiments confirm the I pinch, limitation effect in plasma focus, where there is an optimum L 0 below which although the peak total current, I peak, continues to increase progressively with progressively reduced inductance L 0, the I pinch and consequently the soft X-ray yield, Ysxr, of that plasma focus would not increase, but instead decreases. For the PF-SY1 with capacitance of 25 μF, the optimum L 0 = 5 nH, at which I pinch = 254 kA, Ysxr = 5 J; reducing L 0 further increases neither I pinch nor nitrogen Ysxr. The obtained results indicate that reducing the present L 0 of the PF-SY1 device will increase the nitrogen soft X-ray yield.

Keywords

Plasma focus SY1 Pinch current limitation Soft X-ray Nitrogen gas Lee model RADPF5.15a 

Notes

Acknowledgments

The authors would like to thank Director General of AECS, for encouragement and permanent support. One of authors (Dr. Mohamad Akel) would also like to express thanks to Mrs. Sheren Isamael, who collaborated with me going through with all the numerical experiments using Lee Model.

References

  1. 1.
    M. Shafiq et al., Mod. Phys. Lett. B. 16(9), 309–318 (2002)CrossRefADSGoogle Scholar
  2. 2.
    M. Shafiq et al., J. Fusion Energ. 20(3), 113–115 (2001). (q 2002)CrossRefGoogle Scholar
  3. 3.
    N.K. Neog et al., J. Appl. Phys. 99, 013302 (2006)CrossRefADSGoogle Scholar
  4. 4.
    S. Lee et al., Appl. Phys. Lett. 92, 111501 (2008)CrossRefADSGoogle Scholar
  5. 5.
    S. Lee et al., Appl. Phys. Lett. 92, 021503 (2008)CrossRefADSGoogle Scholar
  6. 6.
    S. Lee et al., Plasma Phys. Control Fusion 50, 065012 (2008)CrossRefADSGoogle Scholar
  7. 7.
    S. Lee, Radiative Dense Plasma Focus Computation Package: RADPF (2009), http://www.intimal.edu.my/school/fas/UFLF/. http://www.plasmafocus.net/IPFS/modelpackage/File1RADPF.htm
  8. 8.
    S. Lee, Plasma Phys. Control Fusion 50, 105005 (2008)CrossRefADSGoogle Scholar
  9. 9.
    S. Lee et al., J. Fusion Energ. 27(4), 292–295 (2008)CrossRefGoogle Scholar
  10. 10.
    V.A. Gribkov et al., J. Phys. D Appl. Phys. 40, 3592–3607 (2007)CrossRefADSGoogle Scholar
  11. 11.
    V.Ya. Nukulin, S.N. Polukhin, Plasma Phys. Rep. 33, 271–277 (2007)CrossRefADSGoogle Scholar
  12. 12.
    M. Akel, S. Al-Hawat, S. Lee, J. Fusion Energ. (2009). doi:  10.1007/s10894-009-9203-4, published online 19 May
  13. 13.
    S. Lee, in Radiations in Plasmas, ed. by B. McNamara (World Scientific, Singapore, 1984), pp. 978–987Google Scholar
  14. 14.
    S. Lee et al., Am. J. Phys. 56, 62–68 (1988)CrossRefADSGoogle Scholar
  15. 15.
    T.Y. Tou, S. Lee, K.H. Kwek, IEEE Trans. Plasma Sci. 17, 311–315 (1989)CrossRefADSGoogle Scholar
  16. 16.
    S. Lee, IEEE Trans. Plasma Sci. 19, 912–919 (1991)CrossRefADSGoogle Scholar
  17. 17.
    A. Serban, S. Lee, J. Plasma Phys. 60, 3–15 (1998)CrossRefADSGoogle Scholar
  18. 18.
    S. Lee, A. Serban, IEEE Trans. Plasma Sci. 24, 1101–1105 (1996)CrossRefADSGoogle Scholar
  19. 19.
    J.B. Ali, Development and Studies of a small Plasma Focus. PhD thesis, University Technology Malaysia, Kuala Lumpur, Malaysia, 1990Google Scholar
  20. 20.
    D.E. Potter, Nucl. Fusion. 18(6), 813–823 (1978)ADSGoogle Scholar
  21. 21.
    M.H. Liu et al., IEEE Trans. Plasma Sci. 26, 135–140 (1998)CrossRefADSGoogle Scholar
  22. 22.
    S. Lee et al., IEEE Trans. Plasma Sci. 26, 1119–1126 (1998)CrossRefADSGoogle Scholar
  23. 23.
    S. Bing, Plasma dynamics and X-ray emission of the plasma focus. PhD Thesis, NIE ICTP Open Access Archive: http://eprints.ictp.it/99/, 2000
  24. 24.
  25. 25.
    S. Lee (2005), ICTP Open Access Archive: http://eprints.ictp.it/85/13
  26. 26.
    S. Lee, Twelve Years of UNU/ICTP PFF—A Review IC, 98, (231) ICTP, Miramare, Trieste, (1998), ICTP OAA: http://eprints.ictp.it/31/
  27. 27.
    S.V. Springham et al., Plasma Phys. Control Fusion 42, 1023–1032 (2000)CrossRefADSGoogle Scholar
  28. 28.
    A. Patran et al., Plasma Sources Sci. Technol. 14(3), 549–560 (2005)CrossRefADSGoogle Scholar
  29. 29.
    V. Siahpoush et al., Plasma Phys. Control Fusion 47, 1065–1075 (2005)CrossRefADSGoogle Scholar
  30. 30.
    L. Soto et al., Braz. J. Phys. 34, 1814–1821 (2004)CrossRefGoogle Scholar
  31. 31.
    D. Wong et al., Plasma Sources Sci. Technol. 16, 116–123 (2007)CrossRefADSGoogle Scholar
  32. 32.
    S. Al-Hawat, IEEE Trans. Plasma Sci. 32(2), 764–769 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PhysicsAtomic Energy CommissionDamascusSyria
  2. 2.Institute for Plasma Focus StudiesChadstoneAustralia
  3. 3.Nanyang Technological University, National Institute of EducationSingaporeSingapore
  4. 4.INTI University CollegeNilaiMalaysia

Personalised recommendations