Advertisement

Journal of Fusion Energy

, Volume 28, Issue 2, pp 156–161 | Cite as

Development of Merged Compact Toroids for Use as a Magnetized Target Fusion Plasma

  • Stephen HowardEmail author
  • Michel Laberge
  • Lon McIlwraith
  • Doug Richardson
  • James Gregson
Original Paper

Abstract

We report on the development of compact toroid (CT) accelerators to create the target plasma for magnetized target fusion (MTF) devices. Due to the requirements of high initial density of ~1017 cm−3, strong internal fields of 5–10 T, and base temperatures of >100 eV, a design based on conical compression electrodes is an effective avenue to pursue. Progress is being made at General Fusion Inc, (Vancouver, Canada) to develop a pair of large CT accelerators for generating an MTF target plasma. In this design, tungsten coated conical electrodes (with a formation diameter of 1.9 m, a radial compression factor of 4, and overall accelerator length of 5 m) will be used to achieve ohmic heating and acceleration of the CT, yet with low wall sputtering rates. A pair of these accelerators can be synchronized and shot at one another, producing a collision and reconnection of the two CTs within the center of an MTF chamber. Depending on the choice of relative helicities, the two CTs will merge to form either a spheromak-like or an FRC-like plasma.

Keywords

Magnetized target fusion Compact toroids Acceleration Spheromak FRC 

References

  1. 1.
    M. Laberge, J. Fusion Energy 27, 65–68 (2008)CrossRefGoogle Scholar
  2. 2.
    M. Laberge, J. Fusion Energy, doi: 10.1007/s10894-008-9181-y
  3. 3.
    J.H. Degnan et al., Phys. Fluids B 5(8), 2938 (1993)CrossRefADSGoogle Scholar
  4. 4.
    J.H. Degnan et al., Fusion Tech 27, 107 (1995)Google Scholar
  5. 5.
    D.Q. Hwang et al., J. Fusion Energy 26, 81–84 (2007)CrossRefGoogle Scholar
  6. 6.
    M.R. Brown et al., J. Fusion Energy 27, 16–19 (2008)CrossRefGoogle Scholar
  7. 7.
    W.H. Matthaeus et al., Geophys. Res. Lett 32, L23104 (2005)CrossRefADSGoogle Scholar
  8. 8.
    M. Yamada, Phys. Plasmas 14, 058102 (2007)CrossRefADSGoogle Scholar
  9. 9.
    F. Trintchouk et al., Phys. Plasmas 10(1), 319–322 (2003)CrossRefADSGoogle Scholar
  10. 10.
    J.H. Hammer et al., Phys. Rev. Lett 61(25), 2843 (1988)CrossRefADSGoogle Scholar
  11. 11.
    A.W. Molvik et al., Phys. Rev. Lett 66(2), 165 (1991)CrossRefADSGoogle Scholar
  12. 12.
    R. Raman et al., Phys. Rev. Lett 73(23), 3101 (1994)CrossRefADSGoogle Scholar
  13. 13.
    R. Raman, P. Gierszewski, Fusion Eng. Des 39–40, 977–985 (1998)CrossRefGoogle Scholar
  14. 14.
    R.M.G. Rusbridge et al., Plasma Phys. Contr. Fusion 39, 639–714 (1997)CrossRefGoogle Scholar
  15. 15.
    E.B. Hooper et al., Nucl. Fusion 47, 1064–1070 (2007)CrossRefADSGoogle Scholar
  16. 16.
    R. Peterkin, Phys. Rev. Lett 74(16), 3165 (1995)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Stephen Howard
    • 1
    Email author
  • Michel Laberge
    • 1
  • Lon McIlwraith
    • 1
  • Doug Richardson
    • 1
  • James Gregson
    • 1
  1. 1.General Fusion Inc.VancouverCanada

Personalised recommendations