Journal of Fusion Energy

, Volume 27, Issue 1–2, pp 25–31 | Cite as

Magneto-inertial Approach to Direct-drive Laser Fusion

  • O. V. Gotchev
  • N. W. Jang
  • J. P. Knauer
  • M. D. Barbero
  • R. Betti
  • C. K. Li
  • R. D. Petrasso
Original Paper

Abstract

A magneto-inertial fusion (MIF) approach to inertial confinement fusion (ICF), based on laser-driven magnetic-flux compression (LDFC) is described. This approach benefits from both the high-energy-density characteristic to ICF and the thermal insulation of the fuel by magnetic fields, typical of MFE. The reduction in thermal-conduction losses in the hot spot of an imploding target that has trapped and amplified a pre-seeded magnetic flux leads to increased hot-spot temperatures at lower implosion velocities than required in conventional ICF. This can lead to ignition designs with larger energy gains. This work describes the main concept and the use of a compact magnetic-pulse system to seed a macroscopic magnetic field into cylindrical DD-filled targets, which are radially driven with the OMEGA laser. The compression of the internal magnetic flux is measured with proton deflectometry. Magnetohydrodynamic simulations predict compression of a 0.1-MG seed field to multi-megagauss values, at which levels the radial electron thermal conduction in the hot spot is significantly inhibited. Initial benchmark experiments are described.

Keywords

Inertial confinement High-beta plasmas Magnetic insulation 

References

  1. 1.
    S.E. Bodner et al., Phys. Plasmas 5, 1901–1918 (1998)CrossRefGoogle Scholar
  2. 2.
    R.L. McCrory et al., J. Phys. IV France 133, 59–65 (2006)CrossRefGoogle Scholar
  3. 3.
    B.A. Hammel et al., Plasma Phys. Control Fusion 48, B497–B506 (2006)CrossRefGoogle Scholar
  4. 4.
    R. Betti et al., Plasma Phys Control Fusion 48, B153–B163 (2006)CrossRefMathSciNetGoogle Scholar
  5. 5.
    R. Betti, C. Zhou, Phys. Plasmas 12, 110702 (2005)CrossRefGoogle Scholar
  6. 6.
    P.W. McKenty et al., Phys. Plasmas 8, 2315–2322 (2001)CrossRefGoogle Scholar
  7. 7.
    I.R. Lindemuth et al., Phys. Rev. Lett. 75, 1953–1956 (1995)CrossRefGoogle Scholar
  8. 8.
    R.E. Siemon, I.R. Lindemuth, K.F. Schoenberg, Comments Plasma Phy. Control. Fusion. 18, 363–386 (1999)Google Scholar
  9. 9.
    D.D. Ryutov, Y.C.F. Thio, Fusion Tech. 49, 39–55 (2006)Google Scholar
  10. 10.
    C.M. Fowler et al., J. Appl. Phys. 31, 588–594 (1960)CrossRefGoogle Scholar
  11. 11.
    A.D. Sakharov et al., Sov. Phys. Doklady AN SSSR. 165, 65–68 (1965)Google Scholar
  12. 12.
    A.I. Bykov et al., Physica B 294-295, 574–578 (2001)CrossRefGoogle Scholar
  13. 13.
    T.R. Boehly et al., Opt. Commun. 133, 495–506 (1997)CrossRefGoogle Scholar
  14. 14.
    M.A. Liberman, A.L. Velikovich, J. Plasma Phys. 31, 369–380 (1984)CrossRefGoogle Scholar
  15. 15.
    A.L. Velikovich et al., Sov. Phys. JETP 61, 261–269 (1985)Google Scholar
  16. 16.
    N.W. Jang et al., Bull. Am. Phys. Soc. 51, 144 (2006)Google Scholar
  17. 17.
    M.C. Richardson et al., in Laser Interaction and Related Plasma Phenomena, ed. by H. Hora, G.H. Miley (Plenum Publishing, NY, 1986), vol. 7, pp. 421–448)Google Scholar
  18. 18.
    S.I. Braginskii, in Acad, ed. by M.A. Leontovich. Reviews of Plasma Physics, vol. 1 (Consultants Bureau, New York, 1965) p. 205Google Scholar
  19. 19.
    O. Gotchev et al., Bull. Am. Phys. Soc. 51, 144 (2006)Google Scholar
  20. 20.
    F. Herlach, Rep. Prog. Phys. 62, 896–920 (1999)CrossRefGoogle Scholar
  21. 21.
    O. Chubar, P. Elleaume, J. Chavanne, J. Synchrotron Radiat. 5, 481–484 (1998)CrossRefGoogle Scholar
  22. 22.
    C.K. Li et al., Rev. Sci. Instrum. 77, 10E725 (2006)CrossRefGoogle Scholar
  23. 23.
    J. Myatt et al., Bull. Am. Phys. Soc. 1, 25 (2006)Google Scholar
  24. 24.
    L.J. Waxer et al., Opt. Photonics News 16, 30–36 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • O. V. Gotchev
    • 1
    • 2
    • 3
  • N. W. Jang
    • 1
    • 2
    • 3
  • J. P. Knauer
    • 1
  • M. D. Barbero
    • 1
    • 4
  • R. Betti
    • 1
    • 2
    • 3
    • 4
  • C. K. Li
    • 5
  • R. D. Petrasso
    • 5
  1. 1.Laboratory for Laser EnergeticsUniversity of RochesterRochesterUSA
  2. 2.Fusion Science Center for Extreme States of Matter and Fast Ignition PhysicsUniversity of RochesterRochesterUSA
  3. 3.Department of Medical EngineeringUniversity of RochesterRochesterUSA
  4. 4.Department of Physics and AstronomyUniversity of RochesterRochesterUSA
  5. 5.Plasma Science and Fusion CenterMassachusetts Institute of TechnologyFrederickUSA

Personalised recommendations