Journal of Fusion Energy

, Volume 27, Issue 1–2, pp 57–60 | Cite as

Physics Basis and Progress for a Translating FRC for MTF

  • T. P. Intrator
  • G. A. Wurden
  • P. E. Sieck
  • W. J. Waganaar
  • R. Renneke
  • L. Dorf
  • M. Kostora
  • S. C. Hsu
  • A. G. Lynn
  • M. Gilmore
  • R. E. Siemon
  • T. Awe
  • J. Degnan
  • C. Grabowski
  • E. L. Ruden
Original Paper

Abstract

We describe a physics scaling model used to design the high density field reversed configuration (FRC) at LANL that will translate into a mirror bounded compression region, and undergo Magnetized Target Fusion compression to a high energy density plasma. At Kirtland AFRL the FRC will be compressed inside a flux conserving cylindrical shell. The theta pinch formed FRC will be expelled from inside a conical theta coil. Even though the ideal FRC has zero helicity and toroidal magnetic field, significant non-ideal properties follow from formation within a conical (not cylindrical) theta coil. The FRC stability and lifetime properties may improve. Several experimental features will also allow unique scientific investigations of this high Lundquist number but collisional plasma.

Keywords

Field reversed configuration Magneto inertial fusion Magnetized target fusion High energy density laboratory plasmas 

References

  1. 1.
    R.C. Kirkpatrick, I.R. Lindemuth, M.S. Ward, Fusion Technol. 27, 201–214 (1995)Google Scholar
  2. 2.
    A.G. Es’kov, R.K. Kurtmullaev, A.I. Malyutin, V.N. Semenov, I.Y. Shipuk, Plasma Phys. 489–492 (1976); A.G. Es’kov, M.I. Kitaev, R.K. Kurtmullaev, V.M. Novikov, V.I. Semenov, E.F. Strizhov, Eur. Phys. Soc. L-5, 319–322 (1981)Google Scholar
  3. 3.
    J.H. Degnan, et al., IEEE Int. Conf. Plasma Sci. 258–258 (2000)Google Scholar
  4. 4.
    H.Y. Guo, A.L. Hoffman, L.C. Steinhauer, K.E. Miller, Phys. Rev. Lett. 95, 175001–175004 (2005)CrossRefGoogle Scholar
  5. 5.
    T. Intrator, S.Y. Zhang, J.H. Degnan, I. Furno, C. Grabowski, S.C. Hsu, E.L. Ruden, P.G. Sanchez, J.M. Taccetti, M. Tuszewski, W.J. Waganaar, G.A. Wurden, Phys. Plasmas 11, 2580–2585 (2004)CrossRefGoogle Scholar
  6. 6.
    J.M. Taccetti, T.P. Intrator, G.A. Wurden, S.Y. Zhang, R. Aragonez, P.N. Assmus, C.M. Bass, C. Carey, S.A. de Vries, W.J. Fienup, I. Furno, S.C. Hsu, M.P. Kozar, M.C. Langner, J. Liang, R.J. Maqueda, R.A. Martinez, P.G. Sanchez, K.F. Schoenberg, K.J. Scott, R.E. Siemon, E.M. Tejero, E.H. Trask, M. Tuszewski, W. J. Waganaar, C. Grabowski, E.L. Ruden, J.H. Degnan, T. Cavazos, D.G. Gale, W. Sommars, Rev. Sci. Instrum. 74, 4314–4323 (2003)CrossRefGoogle Scholar
  7. 7.
    R.L. Spencer, M. Tuszewski, R.K. Linford, Phys. Fluids 26, 1564–1568 (1983)MATHCrossRefGoogle Scholar
  8. 8.
    M. Tuszewski, Phys. Fluids 31, 3754–3759 (1988)CrossRefGoogle Scholar
  9. 9.
    D.J. Rej, W.T. Armstrong, R.E. Chrien, P.L. Klingner, R.K. Linford, K.F. McKenna, E.G. Sherwood, R.E. Siemon, M. Tuszewski, R.D. Milroy, Phys. Fluids 29, 852–862 (1986)CrossRefGoogle Scholar
  10. 10.
    M. Tuszewski, Nucl. Fusion 28, 2033–2091 (1988)Google Scholar
  11. 11.
    M. Tuszewski, B.L. Wright, Phys. Rev. Lett. 63, 2236–2239 (1989)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • T. P. Intrator
    • 1
  • G. A. Wurden
    • 1
  • P. E. Sieck
    • 1
  • W. J. Waganaar
    • 1
  • R. Renneke
    • 1
  • L. Dorf
    • 1
  • M. Kostora
    • 1
  • S. C. Hsu
    • 1
  • A. G. Lynn
    • 2
  • M. Gilmore
    • 2
  • R. E. Siemon
    • 3
  • T. Awe
    • 3
  • J. Degnan
    • 4
  • C. Grabowski
    • 4
  • E. L. Ruden
    • 4
  1. 1.LANLLos AlamosUSA
  2. 2.University of New MexicoAlbuquerqueUSA
  3. 3.University of NevadaRenoUSA
  4. 4.Air Force Research LaboratoryAlbuquerqueUSA

Personalised recommendations