Advertisement

Journal of Fusion Energy

, Volume 26, Issue 1–2, pp 43–46 | Cite as

Non-inductive Production of ST Plasmas with Washer Gun Sources on the Pegasus Toroidal Experiment

  • N. W. Eidietis
  • R. J. Fonck
  • G. D. Garstka
  • E. A. Unterberg
  • G. R. Winz
Article

Formation of tokamak-like plasmas via electrostatic helicity injection in the ultra-low aspect ratio Pegasus Toroidal Experiment is reported. Two low-impurity, high-current (1 kA) washer gun current sources have been installed in the lower divertor region. These initially drive current along helical field lines produced by the applied toroidal and vertical fields. At sufficiently low values of externally applied vertical field, the poloidal field generated by the plasma is large enough to cause a poloidal flux reversal. In these cases the plasma relaxes into a tokamak-like configuration. Discharges with I ϕ≈ 30 kA are produced with less than 2 kA of injected current. These discharges exhibit features indicative of tokamak plasmas, including reversal of poloidal flux at the center column, strong vacuum field deformation, increased current decay times, increased core heating, and characteristic MHD modes common to other helicity-injection-driven toroidal devices.

Keywords

DC helicity injection non-inductive startup washer guns 

Notes

Acknowledgments

The authors thank G. Fiksel and the Madison Symmetric Torus group for providing the gun current sources and extensive advice on their operation. We also thank M. Ono and M. Peng of PPPL for their useful discussions and continual encouragement. This work supported by US DOE Grant DE-FG02-96ER54375. The research was performed under appointment to the Fusion Energy Sciences Fellowship Program administered by Oak Ridge Institute for Science and Education under a contract between the U.S. Department of Energy and the Oak Ridge associated Universities.

References

  1. 1.
    Ono M., Greene G.J., et al. (1987). Phys. Rev. Lett. 59: 2165CrossRefGoogle Scholar
  2. 2.
    Darrow D. S., Ono M., et al. (1990). Phys. Fluids B2: 1415CrossRefGoogle Scholar
  3. 3.
    Raman R., Jarboe T. R., et al. (2005). Nucl. Fusion 45:15CrossRefGoogle Scholar
  4. 4.
    Raman R., Jarboe T. R., et al. (2005). Phys. Rev. Lett. 90:075005CrossRefGoogle Scholar
  5. 5.
    Garstka G. D., et al. (2003). Phys. Plasmas 10:1705CrossRefGoogle Scholar
  6. 6.
    Fiksel G., et al. (1996). Plasma Sources Sci. Technol 5:78CrossRefGoogle Scholar
  7. 7.
    Redd A. J., Nelson B. A., et al. (2002). Phys. Plasmas 9:2006CrossRefGoogle Scholar
  8. 8.
    Brennan D., Browning P. K., et al. (1999). Phys. Plasmas 6:4248CrossRefGoogle Scholar
  9. 9.
    Tang X. Z., Boozer A. H. (2004). Phys. Plasmas 11:171CrossRefGoogle Scholar
  10. 10.
    Hsu S. C., Bellan P. M. (2003). Phys. Rev. Lett. 90:215002CrossRefGoogle Scholar
  11. 11.
    J. Wesson, Tokamaks, 3rd edn. (Oxford University Press, New York, 2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • N. W. Eidietis
    • 1
  • R. J. Fonck
    • 1
  • G. D. Garstka
    • 1
  • E. A. Unterberg
    • 1
  • G. R. Winz
    • 1
  1. 1.University of WisconsinMadisonUSA

Personalised recommendations