Journal of Fusion Energy

, Volume 26, Issue 1–2, pp 173–177 | Cite as

Solving the Stand-off Problem for Magnetized Target Fusion: Plasma Streams as Disposable Electrodes, Together with a Local Spherical Blanket

Article

Abstract

In a fusion reactor based on the magnetized target fusion approach, the permanent power supply has to deliver currents up to a few mega-amperes to the target dropped into the reaction chamber. All the structures situated around the target will be destroyed after every pulse and have to be replaced at a frequency of 1–10 Hz. In this paper, an approach based on the use of spherical blanket surrounding the target, and pulsed plasma electrodes connecting the target to the power supply, is discussed. A brief analysis of the processes associated with creation of plasma electrodes is presented.

Keywords

Magnetized target fusion plasma liner spherical blanket plasma electrodes 

References

  1. 1.
    R. P. Drake, J. H. Hammer, C. W. Hartman, L. J. Perkins, and D. D. Ryutov, Proc. 16th Symp. On Fusion Eng., IEEE Nucl. and Plasma Phys. Soc. (September 30–October 5, 1995); Am. Nucl. Soc., 1, 97 (1995); Fusion Technol., 30, 310 (1996)Google Scholar
  2. 2.
    R. C. Kirkpatrick, I. R. Lindemuth, M. S. Ward Fusion Techn., 27, 201 (1995)Google Scholar
  3. 3.
    D. D. Ryutov, M. S. Derzon, M. K. Matzen Rev. Mod. Phys., 72, 167 (2000)CrossRefGoogle Scholar
  4. 4.
    R. W. Moses, R. A. Krakowski, and R. L. Miller, A Conceptual Design of the Fast-Liner Reactor (FLR) for Fusion Power. LANL report LA-7686-MS, February 1979Google Scholar
  5. 5.
    Y. C. F. Thio, E. Panarella, R. C. Kirkpatrick, C. E. Knapp, F. Wysocki. P. Parks, and G. Schmidt, Magnetized Target Fusion in a Spheroidal Geometry with Standoff Drivers, In: Current Trends in International Fusion Research, Proc. 2nd Symposium, E. Panarella (Ed), (National Research Council of Canada, Ottawa, Canada, 1999), p. 113; Y. C. F. Thio, C. E. Knapp, R. C. Kirkpatrick, R. E. Siemon, and P. J. Turchi. J. Fusion Energy, 20, 1 (2001)Google Scholar
  6. 6.
    D. D. Ryutov , Y. C. F. Thio, Fusion Sci. Technol., 49, 39 (2006)Google Scholar
  7. 7.
    P. B. Parks and Y. C. F. Thio, The Dynamics of Plasma Liners Formed by the Merging of Supersonic Plasma Jets, Prepared for submittal to Physics of Plasmas Google Scholar
  8. 8.
    E. P. Velikhov, V. S. Golubev, V. V. Chernukha, Sov. At. Energy, 36(4), 330 (1974)CrossRefGoogle Scholar
  9. 9.
    B. G. Logan Fusion Eng. Design, 22, 1953 (1993)MathSciNetGoogle Scholar
  10. 10.
    W. M. Meyer Fusion Eng. Design, 25, 145 (1994)CrossRefGoogle Scholar
  11. 11.
    D. L. Book, NRL Plasma Formulary, Naval Research Laboratory. (1987)Google Scholar
  12. 12.
    P. Stangeby, The Plasma Boundary of Magnetic Fusion Devices. (IoP Publishing, Bristol, 2000), p. 81Google Scholar
  13. 13.
    S. Semushin, V. Malka Rev. Sci. Instrum., 72, 2961, (2001)CrossRefGoogle Scholar
  14. 14.
    T. Ditmire, S. Bless, G. Dyer, et al. Rad. Phys. Chem., 70(4–5), 535 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA
  2. 2.US Department of EnergyGermantownUSA

Personalised recommendations