Advertisement

Journal of Fusion Energy

, Volume 25, Issue 3–4, pp 175–180 | Cite as

Progress in Condensed Matter Nuclear Science

  • Xing Z. Li
  • Qing M. Wei
  • Bin Liu
  • Shu X. Zheng
  • Dong X. Cao
OriginalPaper
  • 75 Downloads

Abstract

The progress of the Condensed Matter Nuclear Science reported during ICCF-12 is summarized with emphasis on reply to the DOE review in 1989 and in 2004. The 18 reviewers might not be aware of the new achievement in the Advanced Technology Research Center, Mitsubishi Heavy Industries; hence, their conclusion should have been more positive towards this research. Arata’s DS-reactor, NASA’s early experiment, and the“heat after death” experiment should change the conclusion about the “excess heat” and its prospect. Various fundamental researches have shown the consistent nature in understanding. A cost effective and comprehensive study is mentioned.

KEY WORDS

condensed matter nuclear science nuclear transmutation super-lattice complex deuterium flux excess heat 

Notes

Acknowledgements

This work is supported by the Natural Science Foundation of China (#10475045), Ministry of Science and Technology (Division of Fundamental Research), and Tsinghua University (985-II, Basic Research Funds).

References

  1. 1.
    “Cold Fusion Research”, DOE/S-0073, A Report of the Energy Research Advisory Board to the United States Department of Energy (November 1989)Google Scholar
  2. 2.
    P. L. Hagelstein, M. C. H. McKubre, D. J. Nagel, T. A. Chubb, and R. J. Hekman, New Physical Effects in Metal Deuterides, private communication (November 2004)Google Scholar
  3. 3.
    U.S. Department of Energy Cold Fusion Review Reviewer Comments, http://www.newenergytimes.com/DOE/DOE.htm (2004)
  4. 4.
    Y. Iwamura, et al., Observation of surface distribution of products by X-Ray fluorescence spectrometry during D2 gas permeation through Pd complexes, Presentation in ICCF-12, Nov. 27–Dec. 2, 2005, Yokohama, JapanGoogle Scholar
  5. 5.
    T. Higashiyama, A. Takahashi, et al., in P. Hagelstein and S. R. Chubb (eds) Proceedings of ICCF-10, Cambridge, USA, 24–29 August, 2003, World Scientific (New Jersey, 2006), p. 447Google Scholar
  6. 6.
    S. Narita, et al., Discharge experiment using Pd/CaO/Pd multi-layered cathode, Presentation in ICCF-12, Nov. 27–Dec. 2, 2005, Yokohama, JapanGoogle Scholar
  7. 7.
    H. Yamada, et al., Producing transmutation element on multi-layered Pd sample by deuterium permeation, Presentation in ICCF-12, Nov. 27–Dec. 2, 2005, Yokohama, JapanGoogle Scholar
  8. 8.
    G. S. Qiao, X. Z. Li, et al., Proceedings of ICCF7, Vancouver, Canada, April 19–24, 1998, ENECO, Inc., Salt Lake City, UT (1998), p. 314Google Scholar
  9. 9.
    G. H. Miley, Overview of light water/hydrogen-based low energy nuclear reactions, Presentation in ICCF-12, Nov. 27–Dec. 2, 2005, Yokohama, JapanGoogle Scholar
  10. 10.
    T. Mizuno, T. Ohmori, and M. Enyo, J. New Energy, 1(1), 23 (1996)Google Scholar
  11. 11.
    T. Ohmori and M. Enyo, J. New Energy, 1(1), 15 (1996)Google Scholar
  12. 12.
    J. O.-M. Bockris, in J.-P. Biberian (ed) Proceedings of ICCF-11, Marseilles, France, 31 Oct.–5 Nov. 2004, World Scientific (New Jersey 2006), p. 562Google Scholar
  13. 13.
    Y. Arata, M. J. A. Y. C. Zhang, Development of “DS-Reactor” as the practical reactor of cold fusion based on the “DS-Cell” with the “DS-Cathode”, Presentation in ICCF-12, Nov. 27–Dec. 2, 2005, Yokohama, JapanGoogle Scholar
  14. 14.
    X. Z. Li, J. Tian, et al., J. Phys. D Appl. Phys. 36, 3095 (2003)Google Scholar
  15. 15.
    G. C. Fralick, A. J. Decker, and J. W. Blue, Results of an attempt to measure increased rates of the reaction 2D  + 2D→ 3He  +  n in a nonelectrochemical cold fusion experiment, NASA Technical Memorandum 102430, Lewis Research Center Cleveland, Ohio, Dec., 1989Google Scholar
  16. 16.
    Fleischmann M., Pons S. (1993) Calorimetry of the Pd–D2O system: from simplicity via complications to simplicity. Phys. Lett. A 176:118CrossRefGoogle Scholar
  17. 17.
    A. Kubato, et al., in M. Okamoto (ed) Proceedings of ICCF-6, Toya, Japan,13–18 Oct., 1996, Vol. 1, p. 52Google Scholar
  18. 18.
    G. H. Miley, et al., in M. Okamoto (ed) Proceedings of ICCF-6, Toya, Japan,13–18 Oct., 1996, Vol. 2, p. 629Google Scholar
  19. 19.
    Y. Iwamura, et al., in M. Okamoto (ed) Proceedings of ICCF-6, Toya, Japan,13–18 Oct., 1996, Vol. 1, p. 274Google Scholar
  20. 20.
    M. C. H. Mckubre, et al., Using resistivity to measure H/Pd and D/Pd loading: method and significance, Presentation in ICCF-12, Nov. 27–Dec. 2, 2005, Yokohama, JapanGoogle Scholar
  21. 21.
    A. Spallone, F. Celani, et al., Measurements of the temperature coefficient of electric resistivity of hydrogen overloaded Pd, Presentation in ICCF-12, Nov. 27–Dec. 2, 2005, Yokohama, JapanGoogle Scholar
  22. 22.
    Kasagi J., et al. (1995) J. Phys. Soc. Japan 64(3):777CrossRefGoogle Scholar
  23. 23.
    A. Takahashi, et al., in P. Hagelstein, S. R. Chubb (eds) Proceedings of ICCF-10, Cambridge, USA, 24–29 August, 2003, World Scientific (New Jersey, 2006), p. 657Google Scholar
  24. 24.
    A. Takahashi, Time-dependent EQPET analysis of TSC, Presentation in ICCF-12, Nov. 27–Dec. 2, 2005, Yokohama, JapanGoogle Scholar
  25. 25.
    T. B. Benson and T. O. Passell, Glow discharge calorimetry, Presentation in ICCF-12, Nov. 27–Dec. 2, 2005, Yokohama, JapanGoogle Scholar
  26. 26.
    I. Dardik, et al., Progress in electrolysis experiments at energetics technologies, Presentation in ICCF-12, Nov. 27–Dec. 2, 2005, Yokohama, JapanGoogle Scholar
  27. 27.
    Li X. Z., et al. (2004) J. Fusion Energy 23(3):217CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Xing Z. Li
    • 1
  • Qing M. Wei
    • 1
  • Bin Liu
    • 1
  • Shu X. Zheng
    • 2
  • Dong X. Cao
    • 2
  1. 1.Department of PhysicsTsinghua UniversityBeijingChina
  2. 2.Department of Engineering PhysicsTsinghua UniversityBeijingChina

Personalised recommendations