Journal of Fusion Energy

, Volume 23, Issue 1, pp 27–40 | Cite as

An Overview of Tokamak Alternatives in the US Fusion Program with the Aim of Fostering Concept Innovation

  • S Woodruff
Article

Abstract

The US fusion program has operated for just over 50 years, during which time the tokamak has emerged as the most promising vehicle for a burning plasma experiment. However, many other concepts have been built and investigated as alternatives (and possible improvements) to the tokamak, perhaps to make energy from fusion an economic reality sooner. This Paper is an overview of the conventional alternatives to the tokamak and a set of those that are not so conventional with the aim of fostering concept innovation. Usually the devices are grouped into magnetic, inertial, electrostatic, or other categories, with sub-categories. Here, the groupings of conventional- and non-conventional-alternatives are used too. The conventional alternatives are those devices that have been adopted as serious alternatives, and for which many references are immediately available (e.g. rfp, mirror, stellarator, spheromak, laser ICF, etc). The non-conventional alternatives comprise approaches that are not being currently investigated or are worth consideration. In this grouping lie ideas like impact fusion, muon catalyzed fusion, and many historical ones (like the Elmo Bumpy Torus). Several examples of the physics of non-conventional alternatives are presented in summary form as examples of skunkworks in the hope that others will take up the challenge of concept innovation.

Keywords

Fusion history alternates tokamak skunkwork innovation innovative confinement concepts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Woodruff, Proc. Innovative Confinement Concepts Workshop Madison, 2004 http://plasma.physics.wisc.edu/icc2004/.Google Scholar
  2. T. Dolan, Fusion Research Pergamon Press 1982, ISBN 0-08-025565-5.Google Scholar
  3. C. M. Braams and P. E. Stott, Nuclear Fusion: Half a Century of Magnetic Confinement Fusion Research IoP Publishing ISBN 0-7503-0705-6.Google Scholar
  4. E. Teller, Fusion ISBN 0126852014.Google Scholar
  5. J. Lindl, Phys. Plasmas 2, 3933 (1995); J. Lindl Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive Springer 1997 ISBN: 156396662X.Google Scholar
  6. T. K. Fowler, Rev. Mod. Phys., 71 (2), (1999).Google Scholar
  7. R. F. Am. J. Phys., 68, 105 (2000). Contains a valuable list of references for fusion as an overview.Google Scholar
  8. Najimabadi et al., J. Fusion Energy, 15 (3/4), p. 249 (1996); Boozer et al., Advisory Committee (see [15]); and P.M. Bellan Spheromaks World Scientific 1999 ISBN: 1860941419; and HIF ref. http://hif.lbl.gov/VNLhome.html.Google Scholar
  9. Special edition of the Journal of Fusion Energy 17 (3), (1998) containing the proceedings from the Symposium on Cost Effective Steps to Fusion Power.Google Scholar
  10. Snowmass proceedings: http://web.gat.com/snowmass/ summarized by Bangerter et al., see particularly Barnes’s contribution; D. C. Barnes, J. Fusion Energy, 18 (1), p. 13 (1999).Google Scholar
  11. ICC website: http://plasma.physics.wisc.edu/icc2004/.Google Scholar
  12. J. Bromberg, Fusion: Science, Politics, and the Invention of a New Energy Source MIT Press 1982, ISBN 0-262-02180-03.Google Scholar
  13. R. Conn Reflections on Fusion’s History and Implications for Fusion’s Future, Proceedings of Snowmass (1999).Google Scholar
  14. Rowberg, R. E. 1999J. Fusion Energy18 29CrossRefGoogle Scholar
  15. OFES http://www.ofes.fusion.doe.gov/More_HTML/FESAC_ Charges_Reports.html.Google Scholar
  16. T. K. Fowler, The Fusion Quest Johns Hopkins University Press (1997) ISBN: 0801854563.Google Scholar
  17. T. A. Heppenheimer, Bookthrift Co (1st edition, 1984) ISBN: 0316357936; R. Herman, Fusion: The Search for Endless Energy Cambridge University Press ISBN 0521383730.Google Scholar
  18. D. C. Robinson, Philos, Trans. R. Soc. Lond. A 357, 515–531 (1999); M. Haines, Plasma Phys. Control. Fusion, 38 643–656 (1996).Google Scholar
  19. Peacock, N. J.,  et al. 1969Nature224448Google Scholar
  20. Burning Plasma Assessment Committee, Board on Physics and Astronomy, Division on Engineering and Physical Sciences (2003) 185 pp.; ISBN 0-309-09082-2; available from the National Academies PressGoogle Scholar
  21. R. Goldston, et al, J. Fusion Energy 21,(2002).Google Scholar
  22. A. Davies U.S. Fusion Energy Science Program presented to the NRC Burning Plasma Assessment Committee.Google Scholar
  23. Physics Today, April 2004.Google Scholar
  24. Nuckolls, J. H., Wood, L., Thiessen, A., Zimmerman, G. B. 1972Nature239129Google Scholar
  25. Ryutov, D. D., Siemon, R. E. 2001Phys. Control. Fusion2185Google Scholar
  26. McCarthy, ,  et al. 2002J. Fusion Energy21121CrossRefGoogle Scholar
  27. US DoE Workshop on Cold Fusion Phenomena, J. Fusion Energy, l9 (1–4) 1990.Google Scholar
  28. see, e.g. Physics Today http://www.physicstoday.org/vol-57/iss-4/p27.html.Google Scholar
  29. R. P. Taleyarkhan, J. S. Cho, C. D. West, R. T. Lahey, Jr., R. I. Nigmatulin, and R. C. Block Phys. Rev. E 69, 036109 (2004)Google Scholar
  30. L. J. Perkins and Scott W. Haney, White Paper Submitted at the Request of Advanced Energy Projects Division U.S. Department of Energy, March 7 (1996).Google Scholar
  31. Manheimer, W. 2001J. Fusion Energy201314CrossRefGoogle Scholar
  32. Y. C. F. Thio, et al., Current Trends in International Fusion Research, Proceedings Of the in E. Panavella (Ed.), Second Symposium, Plenum Press, New York (1999).Google Scholar
  33. Post, R. 2002Plasma Phys. Reports,38712Google Scholar
  34. P. E. Moroz, Phys. Lett. A., 79 (1997).Google Scholar
  35. Colchinet, R. J.,  et al. 1983Plasma Phys.25597615CrossRefGoogle Scholar
  36. Proceedings of the 1979 Impact Fusion Workshop A. T. Pease Los Alamos, NM, July 10–12, LA-8000-C (1979).Google Scholar
  37. Winterberg, F. 1992Phys. Fluids., B433503355Google Scholar
  38. F. Winterberg, ICC workshop 2004.Google Scholar
  39. Zweiback, J.,  et al. 2000Phys. Rev. Lett.8426342637CrossRefGoogle Scholar
  40. Ditmire, T. 1997Nature3865456CrossRefGoogle Scholar
  41. Nagamine, K. 2003Nuclear Phys., A271863866Google Scholar
  42. Ishida, K.,  et al. 2003J. Phys.G2920432045Google Scholar
  43. D. D. Ryutov, A Radical Restructuring of the Fusion Effort Proceedings of Snowmass (1999).Google Scholar
  44. D. D. Ryutov, The Role of Innovations in Fusion Research Proceedings of 15th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, IAEA, Seville 26th September–1 October (1994).Google Scholar
  45. ESAC Workforce Panel Report January (2004).Google Scholar
  46. World Survey of Activities in Controlled Fusion Research, Nuclear Fusion Supplement (1997).Google Scholar
  47. Fusion Energy Development, J. Fusion Energy 6 (2) (1987) Special Edition.Google Scholar
  48. FESAC Priorities Committee http://www.mfescience.org/fesac/index.html.Google Scholar
  49. Thomson and Blackman patent from 1946, reprinted recently in Plasma Physics and Controlled Fusion (see [18]).Google Scholar
  50. M. Umansky, private communication.Google Scholar
  51. MIT Technology Review (September 2003).Google Scholar
  52. J. Loman Business Needs Regarding Fusion: Lessons Learned From Alternative Energy Proceedings of ICC 2004 (see [11]).Google Scholar
  53. . J. Perkins, The Role of Inertial Energy in the Energy Marketplace of the 21st Century and Beyond Nuclear Instruments and Methods in Physics Research A 415, 44 (1998).Google Scholar
  54. Wootton, A., Perkins, L. J. 2000Plasma, Phys. Control. Fusion42B125B141Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • S Woodruff
    • 1
  1. 1.Department of Nuclear EngineeringBerkeleyUSA

Personalised recommendations