Participation of Interferon-Alpha in Regulation of Apoptosis

  • E. D. Bazhanova


According to current data, endocrine system is closely related to immune system and interferons play an important role in this relationship. Interferons can inhibit cell proliferation or control apoptosis. Interferon-alpha (IA) produces a stimulatory effect on DNA sites controlling, via JAK/STAT-pathway, production of anti-apoptotic proteins of the Bcl-2 family. Besides, a very important property of IA is its ability to arrest the cell in the G1-G0 phase, which is what determines static effect of IA on growth of many tumors. Later, in these cells, either apoptosis can develop or they can survive. This depends on many factors including physiological state of the tissue and cell, its differentiation, stage of cellular cycle, etc.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koolman, J. and Rohm, K.-H., Naglyadnaya biokhimiya (Illustrative Biochemistry), Moscow, 2000. See also: Koolman, J. and Rohm, K.-H., Taschen-atlas der Biochemie, New York, 1998.Google Scholar
  2. 2.
    Bodey, B., Bodey, B., Jr., and Kaiser, H.E., Dendritic Type, Accessory Cells within the Mammalian Thymic Microenvironment. Antigen Presentation in the Dendritic Neuro-Endocrine-Immune Cellular Network, In Vivo, 1997, vol. 11, pp. 351–370.PubMedGoogle Scholar
  3. 3.
    Corssmit, E.P., Endert, E., Sauerwein, H.P., and Romijn, J.A., Acute Effects of Interferon-Alpha Administration on Testosterone Concentrations in Healthy Men, Eur. J. Endocrinol., 2000, vol. 143, pp. 371–374.CrossRefPubMedGoogle Scholar
  4. 4.
    Marx, C., Bornstein, S.R., and Wolkersdorfer, G.W., Cellular Immune-Endocrine Interaction in Adrenocortical Tissues, Eur. J. Clin. Invest., 2000, vol. 30,suppl. 3, pp. 1–15.CrossRefGoogle Scholar
  5. 5.
    Miato, J., Panesar, N.S., Chan, K.T., Lai, F.M., Xia, N., Wang, Y., Johnson, P.J., and Chan, J.Y., Differential Expression of a Stress-Modulating Gene, BRE, in the Adrenal Gland, in Adrenal Neoplasia, and in Abnormal Adrenal Tissues, J. Histochem. Cytochem., 2001, vol. 49, pp. 491–500.PubMedGoogle Scholar
  6. 6.
    Marx, C., Bornstein, S.R., Wolkersdorfer, G.W., Peter, M., Sippell, W.G., and Scherbaum, W.A., Relevance of Major Histocompatibility Complex Class II Expression As a Hallmark for the Cellular Differentiation in the Human Adrenal Cortex, J. Clin. Endocrinol. Metab., 1997, vol. 82, pp. 3136–3140.CrossRefPubMedGoogle Scholar
  7. 7.
    Bainbridge, D.R. and Jabbour, H.N., Source and Site of Action of Anti-Luteolytic Interferon in Red Deer (Cervus elaphus): Possible Involvement of Extra-Ovarian Oxytocin Secretion in Maternal Recognition of Pregnancy, J. Reprod. Fertil., 1999, vol. 116, pp. 305–313.PubMedGoogle Scholar
  8. 8.
    Moro, A., Perea, S.E., Pantoja, C., Santos, A., Arana, M.D., and Serrano, M., IFNalpha 2b Induces Apoptosis and Proteasome-Mediated Degradation of p27Kip1 in a Human Lung Cancer Cell Line, Oncol. Rep., 2001, vol. 8, pp. 425–429.PubMedGoogle Scholar
  9. 9.
    Bergquist, J., Josefsson, E., Tarkowski, A., Ekman, R., and Ewing, A., Measurements of Catecholamine-Mediated Apoptosis of Immunocompetent Cells by Capillary Electrophoresis, Electrophoresis, 1997, vol. 18, pp. 1760–1766.CrossRefPubMedGoogle Scholar
  10. 10.
    Hu, S., Peterson, P.K., and Chao, C.C., Cytokine-Mediated Neuronal Apoptosis, Neurochem. Int., 1997, vol. 30, pp. 427–431.CrossRefPubMedGoogle Scholar
  11. 11.
    Sakagami, H. and Kondo, H., Molecular Cloning and Developmental Expression of a Rat Homologue of Death-Associated Protein Kinase in the Nervous System, Brain Res. Mol. Brain Res., 1997, vol. 52, pp. 249–256.CrossRefPubMedGoogle Scholar
  12. 12.
    Jourdan, M., de Vos, J., Mechti, N., and Klein, B., Regulation of Bcl-2-Family Proteins in Myeloma Cells by Three Myeloma Survival Factors: Interleukin-6, Interferon-Alpha and Insulin-Like Growth Factor 1, Cell Death Differ., 2000, vol. 7, pp. 1244–1252.CrossRefPubMedGoogle Scholar
  13. 13.
    Epling-Burnette, P.K., Liu, J.H., Catlett-Falcone, R., Turkson, J., Oshiro, M., Kothapalli, R., Li, Y., Wang, J.M., Yang-Yen, H.F., Karras, J., Jove, R., and Loughran, T.P., Jr., Inhibition of STAT3 Signaling Leads to Apoptosis of Leukemic Large Granular Lymphocytes and Decreased Mcl-1 Expression, J. Clin. Invest., 2001, vol. 107, pp. 351–362.PubMedGoogle Scholar
  14. 14.
    Epling-Burnette, P.K., Zhong, B., Bai, F., Jiang, K., Bailey, R.D., Garcia, R., Jove, R., Djeu, J.Y., Loughran, T.P., Jr., and Wei, S.J., Cooperative Regulation of Mcl-1 by Janus Kinase/Stat and Phosphatidylinositol 3-Kinase Contribute to Granulocytemacrophage Colony-Stimulating Factor-Delayed Apoptosis in Human Neutrophils, Immunol., 2001, vol. 166, pp. 7486–7495.Google Scholar
  15. 15.
    Puthier, D., Thabard, W., Rapp, M., Etrillard, M., Harousseau, J., Bataille, R., and Amiot, M., Interferon Alpha Extends the Survival of Human Myeloma Cells Through an Upregulation of the Mcl-1 Anti-Apoptotic Molecule, Brit. J. Haematol., 2001, vol. 112, pp. 358–363.CrossRefGoogle Scholar
  16. 16.
    El-Sabban, M.R., Nasr, R., Dbaibo, G., Hermine, O., Abboushi, N., Quignon, F., Ameisen, J.C., Bex, F., de The, G., and Bazarbachi, A., Arsenic-Interferon-Alpha-Triggered Apoptosis in HTLV-1 Transformed Cells Is Associated with Tax Down-Regulation and Reversal of NF-Kappa B Activation, Blood, 2000, vol. 96, pp. 2849–2855.PubMedGoogle Scholar
  17. 17.
    Minami, R., Muta, K., Ilseung, C., Abe, Y., Nishimura, J., and Nawata, H., Interleukin-6 Sensitizes Multiple Myeloma Cell Lines for Apoptosis Induced by Interferon-Alpha, Exp. Hematol., 2000, vol. 28, pp. 244–255.CrossRefPubMedGoogle Scholar
  18. 18.
    Gongora, R., Stephan, R.P., Zhang, Z., and Cooper, M.D., An Essential Role for Daxx in the Inhibition of B Lymphopoiesis by Type 1 Interferons, Immunity, 2001, vol. 14, pp. 727–737.CrossRefPubMedGoogle Scholar
  19. 19.
    Imam, H., Eriksson, B., Likinius, A., Janson, E.T., Lindgren, P.G., Wilander, E., and Oberg, K., Induction of Apoptosis in Neuroendocrine Tumors of the Digestive System during Treatment with Somatostatin Analogs, Acta Oncol., 1997, vol. 36, pp. 607–614.PubMedGoogle Scholar
  20. 20.
    Eriksson, B.K., Larsson, E.G., Skogseid, B.M., Lofberg, A.M., Lorelius, L.E., and Oberg, K.E., Life Embolization of Patients with Malignant Neuroendocrine Gastrointestinal Tumors, Cancer, 1998, vol. 83, pp. 2293–2301.CrossRefPubMedGoogle Scholar
  21. 21.
    Oberg, K., Interferon in the Management of Neuroendocrine GEP-Tumors: A Review, Digestion, 2000, vol. 62,suppl. 1, pp. 92–97.CrossRefPubMedGoogle Scholar
  22. 22.
    Oberg, K., State of the Art and Future Prospects in the Management of Neuroendocrine Tumors, Q. J. Nucl. Med., 2000, vol. 44, pp. 3–12.PubMedGoogle Scholar
  23. 23.
    Vial, T., Choquet-Kastylevsky, G., Liautard, C., and Descotes, J., Endocrine and Neurological Adverse Effects of the Therapeutic Interferons, Toxicology, 2000, vol. 142, pp. 161–172.CrossRefPubMedGoogle Scholar
  24. 24.
    Fjallskog, M.L., Granberg, D.P., Welin, S.L., Eriksson, C., Oberg, K.E., Janson, E.T., and Eriksson, B.K., Treatment with Cisplatin and Etoposide in Patients with Neuroendocrine Tumors, Cancer, 2001, vol. 92, pp. 1101–1107.CrossRefPubMedGoogle Scholar
  25. 25.
    Bave, U., Alm, G.V., and Rannblom, L., The Combination of Apoptotic U937 Cells and Lupus IgG Is a Potent IFN-Alpha Inducer, J. Immunol., 2000, vol. 165, pp. 3519–3526.PubMedGoogle Scholar
  26. 26.
    Fontana, R.J., Neuropsychiatric Toxicity of Antiviral Treatment in Chronic Hepatitis, Dig. Dis., 2000, vol. 18, pp. 107–116.CrossRefPubMedGoogle Scholar
  27. 27.
    Vallina, E., Garcia Diez, A., Gallego, M., Villaverde, P., Rippe, M.L., and Arribas, J.M., A Case of Pulmonary Sarcoidosis Induced by Interferon Alfa Treatment in a Female Patient with Hepatitis C, Ann. Med. Intern., 2000, vol. 17, pp. 538–539.Google Scholar
  28. 28.
    Malik, U.R., Makower, D.F., and Wadler, S., Interferon-Mediated Fatigue, Cancer, 2001, vol. 92,suppl. 6, pp. 1664–1668.CrossRefPubMedGoogle Scholar
  29. 29.
    Corssmit, E.P., de Metz, J., Sauerwein, H.P., and Romijn, J.A., Biologic Responses to IFN-Alpha Administration in Humans, Interferon Cytokine Res., 2000, vol. 20, pp. 1039–1047.CrossRefGoogle Scholar
  30. 30.
    Betterle, C., Fabris, P., Zanchetta, R., Pedini, B., Tositti, G., Bosi, E., and Lalla, F., de, Autoimmunity Against Pancreatic Islets and Other Tissues before and after Interferon-Alpha Therapy in Patients with Hepatitis C Virus Chronic Infection, Diabetes Care, 2000, vol. 23, pp. 1177–1181.PubMedGoogle Scholar
  31. 31.
    Wesche, B., Jaeckel, E., Truatwein, C., Wedemeyer, H., Falorni, A., Frank, H., Muhlen, A., von zur, Manns, M.P., and Brabant, G., Induction of Autoantibodies to the Adrenal Cortex and Pancreatic Islet Cells by Interferon Alpha Therapy for Chronic Hepatitis C, Gut, 2001, vol. 48, pp. 378–383.CrossRefPubMedGoogle Scholar
  32. 32.
    Ferlin-Bezombes, M., Jourdan, M., Liautard, J., Brochier, J., Rossi, J.-F., and Klein, B., IFN-α Is a Survival Factor for Myeloma Cells and Reduces Dexamethazone-Induced Apoptosis, J. Immunol., 1998, vol. 161, pp. 2692–2699.PubMedGoogle Scholar
  33. 33.
    Sanceau, J., Hiscott, J., Delattre, O., and Wietzerbin, J., IFN-Beta Induces Serine Phosphorylation of Stat-1 in Ewing’s Sarcoma Cells and Mediates Apoptosis via Induction of IRF-1 and Activation of Caspase-7, Oncogene, 2000, vol. 19, pp. 3372–3383.CrossRefPubMedGoogle Scholar
  34. 34.
    Novikov, I.S., Bulavin, D.V., and Tsygan, V.N., Molecular Mechanisms of Cell Death Initiation, Programmirovannaya kletochnaya gibel’ (The Programmed Cell Death), Novikova, V.S., Ed., St. Petersburg, 1996, pp. 30–50.Google Scholar
  35. 35.
    Egle, A., Villunger, M.K., Bock, J., Gruber, B.A., and Greil, R., Modulation of Apo-1/Fas (CD95)-Induced Programmed Cell Death in Myeloma Cells by Interferon-a2, Eur. J. Immunol., 1996, vol. 23, pp. 3119–3126.Google Scholar
  36. 36.
    Ogawa, M., Nishiura, T., Oritani, K., Yoshida, H., Yoshimura, M., Okajima, Y., Ishikawa, J., Hashimoto, K., Matsumura, I., Tomiyama, Y., and Matsuzawa, Y., Cytokines Prevent Dexamethasone-Induced Apoptosis via the Activation of Mitogen-Activated Protein Kinase and Phosphatidylinositol 3-Kinase Pathways in a New Multiple Myeloma Cell Line, Cancer Res., 2000, vol. 60, pp. 4262–4269.PubMedGoogle Scholar
  37. 37.
    Pilling, D., Akbar, A.N., Girdlestone, J., Orteu, C.H., Borthwick, N.J., Amft, N., Sheel-Toellner, D., Buckley, C.D., and Salmon, M., Interferon-Beta Mediates Stromal Cell Rescue of T Cell from Apoptosis, Eur. J. Immunol., 1999, vol. 29, pp. 1041–1050.CrossRefPubMedGoogle Scholar
  38. 38.
    McCubrey, J.A., May, W.S., Duronio, V., and Mufson, A., Serine/Threonine Phosphorylation in Cytokine Signal Transduction, Leukemia, 2000, vol. 14, pt. 1, pp. 9–21.CrossRefPubMedGoogle Scholar
  39. 39.
    David, M., Petricoin, E., III, Benjamin, C., Pine, R., Weber, M.J., and Larner, A.C., Requirement for MAP Kinase (ERK2) Activity in Interferon α-and Interferon β-Simulated Gene Expression through STAT Proteins, Science, 1995, vol. 269, pp. 1721–1723.PubMedGoogle Scholar
  40. 40.
    Stahl, N., Farruggella, T.J., Boulton, T.G., Zhong, Z., Darnell, J.E., Jr., and Yancopoulos, G.D., Choice of STATs and Other Substrates Specified by Modular Tyrosine-Based Motifs in Cytokine Receptors, Science, 1995, vol. 267, pp. 1349–1352.PubMedGoogle Scholar
  41. 41.
    Rosa Santos, S.C., Dumon, S., Mayeux, P., Gisselbrecht, S., and Gouilleux, F., Cooperation between STAT5 and Phosphatidylinositol 3-Kinase in the IL3-Dependent Survival of a Bone Marrow Derived Cell Line, Oncogene, 2000, vol. 19, no.9, pp. 1164–1172.CrossRefPubMedGoogle Scholar
  42. 42.
    Heim, M.H., Kerr, I.M., Stark, G.R., and Darnell, J.E., Jr., Contribution of STAT SH2 Groups to Specific Interferon Signaling by the Jak-STAT Pathway, Science, 1995, vol. 267, pp. 1347–1349.PubMedGoogle Scholar
  43. 43.
    Imam, H., Gobl, A., Eriksson, B., and Oberg, K., Interferon-Alpha Induces bcl-2 Protooncogene in Patients with Neuroendocrine Gut Tumor Responding to Its Antitumor Action, Anticancer Res., 1997, vol. 17, pp. 4659–4665.PubMedGoogle Scholar
  44. 44.
    Marrack, P., Kappler, J., and Mitchell, T., Type I Interferons Keep Activated T Cells Alive, J. Exp. Med., 1999, vol. 189, pp. 521–530.CrossRefPubMedGoogle Scholar
  45. 45.
    Bazarbachi, A., Nasr, R., El-Sabban, M.E., Mahe, A., Mahieux, R., Gessain, A., Darwiche, N., Dbaibo, G., Kersual, J., Zermati, Y., Dianoux, L., Chelbi-Alix, M.K., de The, H., and Hermine, O., Evidence against a Direct Cytotoxic Effect of Alpha Interferon and Zidovudine in HTLV-1 Associated Adult T Cell Leukemia/Lymphoma, Leukemia, 2000, vol. 14, pp. 716–721.CrossRefPubMedGoogle Scholar
  46. 46.
    Whartenby, K.A., Darnowski, J.W., Freeman, S.M., Yurasha, K., and Calabresi, P., Recombinant Interferon Alpha2a Synergistically Enhances Ganciclovir-Mediated Tumor Cell Killing in the Herpes Simplex Virus Thymidine Kinase System, Cancer Gene Ther., 1999, vol. 6, pp. 402–408.CrossRefPubMedGoogle Scholar
  47. 47.
    Atabasides, H., Tsiapalis, C.M., and Havredaki, M., Poly(A) Polymerase Specifically Implicated in the Mechanism of Chemotherapeutic Drug Action during Cell Apoptosis, Int. J. Biol. Markers, 2000, vol. 15, pp. 10–14.PubMedGoogle Scholar
  48. 48.
    Denovan-Wright, E.M., Ferrier, G.R., Robertson, H.A., and Howlett, S.E., Increased Expression of the Gene for Alpha-Interferon-Inducible Protein in Cardiomyopathic Hamster Heart, Biochem. Biophys. Res. Commun., 2000, vol. 267, pp. 103–108.CrossRefPubMedGoogle Scholar
  49. 49.
    Zuckerman, E., Zuckerman, T., Sahar, D., Streichman, S., Attias, D., Sabo, E., Yeshurun, D., and Rowe, J.M., The Effect of Antiviral Therapy on t(14; 18) Translocation and Immunoglobulin Gene Rearrangement in Patients with Chronic Hepatitis C Virus Infection, Blood, 2001, vol. 97, pp. 1555–1559.CrossRefPubMedGoogle Scholar
  50. 50.
    Einhorn, S., Fernberg, J.O., Grander, D., and Lewensonn, R., Interferon Exerts a Cytotoxic Effect on Primary Human Myeloma Cells, Eur. J. Cancer Clin. Oncol., 1988, vol. 24, pp. 1505–1510.CrossRefPubMedGoogle Scholar
  51. 51.
    Jourdan, M., Zhang, X.G., Portier, M., Boiron, J.M., Bataille, R., and Klein, B., IFN-α Induced Autocrine Production of IL-6 in Myeloma Cell Lines, J. Immunol., 1991, vol. 147, pp. 4402–4407.PubMedGoogle Scholar
  52. 52.
    Schwabe, M., Brini, A.T., Bosco, M.C., Tubboli, F., Egawa, M., Zhao, J., Princler, G.L., and Kung, H.F., Disruption by Interferon-α of an Autocrine Interleukine-6 Growth Loop in IL-6-Dependent U266 Myeloma Cells by Homologous and Heterologous Down-Regulation of the IL-6 Receptor Alpha-and Beta-Chains, J. Clin. Invest., 1994, vol. 94, pp. 2317–2325.PubMedGoogle Scholar
  53. 53.
    Detjen, K.M., Wetzel, M., Farwig, K., Brembeck, F.H., Kaiser, A., Riecken, E.O., Wiedenman, B., and Rosewicz, S., Molecular Mechanism of Interferon Alfa-Mediated Growth Inhibition in Human Neuroendocrine Tumor Cells, Gastroenterol., 2000, vol. 118, pp. 735–748.Google Scholar
  54. 54.
    Dey, B.R., Furlanetto, R.W., and Nissley, P., Suppressor of Cytokine Signaling (SOCS)-3 Protein Interacts with the Insulin-Like Growth Factor-1 Receptor, Biochem. Biophys. Res. Commun., 2000, vol. 278, pp. 38–43.CrossRefPubMedGoogle Scholar
  55. 55.
    Schluter, G., Boinska, D., and Nieman-Seyde, S.C., Evidence for Translational Repression of the SOCS-1 Major Open Reading Frame by an Upstream Open Reading Frame, Biochem. Biophys. Res. Commun., 2000, vol. 268, pp. 255–261.CrossRefPubMedGoogle Scholar
  56. 56.
    Kaufmann, J.A., Bickford, P., and Taglialatela, G., Oxidative-Stress-Dependent Upregulation of Bcl-2 Expression in the Central Nervous System of Aged Fischer-344 Rats, J. Neurochem., 2001, vol. 76, pp. 1099–1108.CrossRefPubMedGoogle Scholar
  57. 57.
    Mattson, M.P., Duan, W., Pedersen, W.A., and Culmsee, C., Neurodegenerative Disorders and Ischemic Brain Diseases, Apoptosis, 2001, vol. 6, pp. 69–81.CrossRefPubMedGoogle Scholar
  58. 58.
    Kim, J.M., Chung, Y.H., Shin, C.M., Kim, M.J., Lee, K.W., and Cha, C.I., Spatial and Temporal Distribution of Bax in Rat Spinal Cord during Normal Aging, Neurol. Res., 2001, vol. 23, pp. 83–86.CrossRefPubMedGoogle Scholar
  59. 59.
    Plett, P.A., Gardner, E.M., and Murasko, D.M., Age-Related Changes in Interferon-Alpha/beta Receptor Expression, Binding, and Induction of Apoptosis in Natural Killer Cells from C57BL/6 Mice, Mech. Ageing Dev., 2000, vol. 118, pp. 129–144.CrossRefPubMedGoogle Scholar
  60. 60.
    Schindowski, K., Leutner, S., Muller, W.E., and Eckert, A., Age-Related Changes of Apoptotic Cell Death in Human Lymphocytes, Neurobiol. Aging, 2000, vol. 21, pp. 661–670.CrossRefPubMedGoogle Scholar
  61. 61.
    Monti, D., Salvioli, S., Capri, M., Malorni, W., Straface, E., Cassarizza, A., Botti, B., Piacentini, M., Baggio, G., Barbi, C., Valensin, S., Bonafe, M., and Franceschi, C., Decreased Susceptibility to Oxidative Stress-Induced Apoptosis of Peripheral Blood Mononuclear Cells from Healthy Elderly and Centenarians, Mech. Ageing Dev., 2000, vol. 121, nos.1–3, pp. 239–250.Google Scholar
  62. 62.
    Radziszewska, E., Piwocka, K., Bielak-Zmijewska, A., Skierski, J., and Sikora, E., Effect of Aging on UVC-Induced Apoptosis of Rat Splenocytes, Acta Biochim. Pol., 2000, vol. 47, pp. 339–347.PubMedGoogle Scholar
  63. 63.
    Sasaki, M., Kumazaki, T., Takano, H., Nishiyama, M., and Mitsui, Y., Senescent Cells Are Resistant to Death Despite Low Bcl-2 Level, Mech. Ageing Dev., 2001, vol. 122, pp. 1695–1706.CrossRefPubMedGoogle Scholar
  64. 64.
    Phaneuf, S. and Leeuwenburgh, C., Cytochrome c Release from Mitochondria in the Aging Heart: A Possible Mechanism for Apoptosis with Age, Am. J. Physiol. Integr. Comp. Physiol., 2002, vol. 282, pp. R423–R430.Google Scholar
  65. 65.
    Centurione, L., Antonucci, A., Miscia, S., Grilli, A., Rapino, M., Grifone, D., Di Giacomo, V., Di Giulio, C., Falconi, M., and Catali, A., Age-Related Death-Survival Balance in Myocardium: An Immunohistochemical and Biochemical Study, Mech. Ageing Dev., 2002, vol. 123, pp. 341–350.CrossRefPubMedGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • E. D. Bazhanova
    • 1
  1. 1.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations