Advertisement

Journal of Engineering Physics and Thermophysics

, Volume 92, Issue 6, pp 1612–1619 | Cite as

Change in the Structure and Properties of Blood Cell Membranes as a Result of Temperature Action

  • G. B. Mel’nikovaEmail author
  • T. N. Tolstaya
  • A. S. Petrovskaya
  • O. N. Shishko
  • E. É. Konstantinova
  • S. A. Chizhik
  • T. V. Mokhort
Article
  • 3 Downloads

A study has been made of the structure and properties of erythrocyte and thrombocyte membranes in patients with diabetes mellitus type 2 by the atomic-force-microscopy method. The influence of the temperature and the incubation time on the local mechanical properties of blood cells and the aggregation properties of erythrocytes has been assessed. The critical temperature and the incubation time for erythrocytes have been established, at which irreversible changes in the properties of erythrocyte membranes occur. It has been shown that thrombocytes are characterized by the higher thermally stable local mechanical properties of the membrane than erythrocytes.

Keywords

atomic-force microscopy local mechanic properties erythrocyte sedimentation rate erythrocytes thrombocytes temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. A. Chernitskii and A. V. Vorobei, Structure and Functions of Erythrocytic Membranes [in Russian], Nauka i Tekhnika, Minsk (1981).Google Scholar
  2. 2.
    L. J. Zuo et al., The effect of hyperthermia on human erythrocyte, J. East China Normal University (Natural Science), No. 3, 1–4 (1988).Google Scholar
  3. 3.
    S. Baar, Osmotic resistance of heat-damaged erythrocytes, J. Clin. Pathol., 20, 239–243 (1967).CrossRefGoogle Scholar
  4. 4.
    International council for standardization in hematology. ISCH recommendation for measurements of erythrocyte sedimentation rate, J. Clin. Pathol., 46, No. 3, 198–203 (1993).Google Scholar
  5. 5.
    G. B. Melnikova , N. S. Kuzhel, T. N. Tolstaya, E. E. Konstantinova, E. S. Drozd, O. N. Shishko, T. G. Mokhort, N. Antonova, P. Riha, A. Kowalczuk, and N. Koseva, Influence of polyacrylic acid nanoparticles on the elastic properties of RBCs membranes in patients with diabetes mellitus type 2, Ser. Biomech., 29, No. 4, 12–29 (2015).Google Scholar
  6. 6.
    G. B. Mel′nikova et al., Determining the elastic modulus and the adhesion force of materials by the atomic-forcemicroscopy method with modified probes, Int. Conf. Scanning Probe Microscopy (SPM-2017), August 27–30, 2017, Ekaterinburg (2017), pp. 179–180.Google Scholar
  7. 7.
    N. A. Troshkin, V. I. Tsirkin, and S. A. Dvoryanskii, Erythrocyte: the structure and functions of its membrane, Vyatskii Meditsinskii Univ., Nos. 2–3, 32–40 (2007).Google Scholar
  8. 8.
    I. A. Sokolova, S. Yu. Rykova, A. A. Shakhnazarova, M. É. Gafarova, T. N. Krasnova, M. D. Khokhlova, E. V. Lyubin, M. N. Skryabina, A. G. Zhdanov, and A. A. Fedyanin, Erythrocyte aggregation: Problems and hypotheses, Ross. Zh. Biomekh., 15, No. 1 (51), 7–22 (2011).Google Scholar
  9. 9.
    V. K. Kostova, A. S. Fokina, I. A. Strokov, V. G. Ionova, et al., Rheological studies of the blood of patients with diabetes mellitus type II, Proc. 27th Symp. on Rheology, September 8–13, 2014, Tver (2014), pp. 107–109.Google Scholar
  10. 10.
    M. Przybylska, M. Bryszewska, and J. Kdziora, Thermosensitivity of red blood cells from Down's syndrome individuals, Bioelectrochemistry, 52, Issue 2, 239–249 (2000).CrossRefGoogle Scholar
  11. 11.
    L. E. Muravlyova et al., Comparative characteristics of erythrocytes charge balance in patients with chronic obstructive pulmonary disease, Eur. Res., 58, Nos. 9–1, 2263–2268 (2013).Google Scholar
  12. 12.
    N. L. Gershfeld and M. Murayama, Thermal instability of red blood cell membrane bilayers: Temperature dependence of hemolysis, J. Membr. Biol., 101, Issue 1, 67–72 (1988).CrossRefGoogle Scholar
  13. 13.
    I. Ivanov and L. Benov, Thermohaemolysis of human erythrocytes in isotonic NaCl/sucrose media during transient heating, J. Therm. Biol., 17, Issue 6, 381–389 (1992).CrossRefGoogle Scholar
  14. 14.
    J. W. Choi, Changes in hematologic parameters induced by thermal treatment of human blood, Ann. Clin. Lab. Sci., No. 32, 393–398 (2002).Google Scholar
  15. 15.
    M. Bochorishvili et al., Thermal characteristics of blood in early age children with pneumonia, Tbilisi State Medical Univ., 4, Issue 3, 21–25 (2004).Google Scholar
  16. 16.
    J. G. White, Effects of heat on platelet structure and function, Am. Soc. Hematol., 32, No. 2, 324–335 (1968).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • G. B. Mel’nikova
    • 1
    Email author
  • T. N. Tolstaya
    • 1
  • A. S. Petrovskaya
    • 1
  • O. N. Shishko
    • 2
  • E. É. Konstantinova
    • 1
  • S. A. Chizhik
    • 1
  • T. V. Mokhort
    • 2
  1. 1.A. V. Luikov Heat and Mass Transfer InstituteNational Academy of Sciences of BelarusMinskBelarus
  2. 2.Belarusian State Medical UniversityMinskBelarus

Personalised recommendations