Journal of Engineering Physics and Thermophysics

, Volume 92, Issue 6, pp 1582–1587 | Cite as

Influence of Microgravitation on Vapor Film Collapse Near a Wire Immersed in Superfluid Helium

  • Yu. Yu. PuzinaEmail author
  • A. P. Kryukov

The processes of heat and mass transfer occurring in the course of vapor fi lm collapse on the surface of a wire heater immersed in a volume of superfluid helium are analyzed. Application of the results of a molecular-kinetic analysis for calculating the intensity of vapor condensation on the interphase surface allows one to obtain the needed relation for calculating the motion of the interphase surface to be used in turn in solving the Rayleigh equation with account for surface tension. The calculation results at a different level of microgravitation are compared with experimental data. An analysis of the influence of various constituents of the pressure difference in the fluid on the speed and time of vapor fi lm collapse is carried out.


helium-II vapor fi lm interphase surface condensation collapse microgravitation molecular-kinetic theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. N. Tarasov, Physical mechanisms of cavitation erosion, Gidrotekh. Stroit., No. 4, 39–44 (2015).Google Scholar
  2. 2.
    R. F. Ganiev , D. A. Zhebynev, and A. M. Fel’dman, Influence of pressure oscillation frequency on cavitation erosion of materials, J. Eng. Phys. Thermophys., 87, No. 3, 665−671 (2014).CrossRefGoogle Scholar
  3. 3.
    O. B. Khavro shkin and V. P. Bystrov, Sonoluminescence and sono-fusion, Prikl. Fiz., No. 5, 7–14 (2007).Google Scholar
  4. 4.
    I. N. Shishk Ova, A. P. Kryukov, and V. Y. Levashov, Study of evaporation–condensation problems: From liquid through interface surface to vapor, Int. J. Heat Mass Transf., 112, 926−932 (2017).CrossRefGoogle Scholar
  5. 5.
    Jiguo Tang, Changqi Yan, and Licheng Sun, Enhanced vapor bubble condensation and collapse with ultrasonic vibration, Exp. Therm. Fluid Sci., 70, 115–124 (2016).CrossRefGoogle Scholar
  6. 6.
    Ichiro Ueno , Jun Ando, Yusuke Koiwa, Takahiro Saiki, and Toshihiro Kaneko, Condensation and collapse of vapor bubble exposed to subcooled pool, 9th Int. Conf. on Boiling and Condensation Heat Transfer, April 26−30, 2015, Boulder, Colorado (2015), p. 6.Google Scholar
  7. 7.
    N. V. Vasil’ev, Yu. A. Zeigarnik, K. A. Khodakov, and V. M. Fedulenko, The nature of “gas” burnout, High Temp., 53, No. 6, 837−840 (2015).CrossRefGoogle Scholar
  8. 8.
    N. Kimura, S. Takada, S. Gotoh, H. Kawamata, M. Iida, M. Murakami, H. Naga, and M. Mamiya, Development of a small He II cryostat with optical windows for a microgravity experiment, Cryogenics, 51, 74–78 (2011).CrossRefGoogle Scholar
  9. 9.
    S. Takada, N. Kimura, M. Murakami, and T. Okamura, Heat transfer during bubble shrinking in saturated He II under microgravity condition, IOP Conf. Ser.: Mater. Sci. Eng., 101, 012163 (2015).CrossRefGoogle Scholar
  10. 10.
    A. P. Kryukov and Yu. Yu. Puzina, Suppression of oscillations of the vapor–liquid phase boundary in boiling of superfluid helium inside a porous body, J. Eng. Phys. Thermophys., 86, No. 1, 23−29 (2013).CrossRefGoogle Scholar
  11. 11.
    D. A. Labuntsov and A. P. Kryukov, Analysis of intensive evaporation and condensation, Int. J. Heat Mass Transf., 22, 989−1002 (1979).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Research University MÉIMoscowRussia

Personalised recommendations