Advertisement

Journal of Engineering Physics and Thermophysics

, Volume 92, Issue 6, pp 1529–1536 | Cite as

Development of Heat Pipes for Cooling Thermally Stressed Electronics Elements

  • K. I. Delendik
  • N. V. KolyagoEmail author
  • O. G. Penyazkov
  • O. L. Voitik
HEAT CONDUCTION AND HEAT TRANSFER IN TECHNOLOGICAL PROCESSES
  • 1 Downloads

An algorithm for the development of heat pipes involving the choice of the working fluid, materials for the casing and wick, and the methods of calculating the limits of heat-transmitting ability of heat pipes is suggested. This algorithm has been applied successfully for creating different types of wicks and heat pipes on the basis of which a cooling system has been created for a high-power light-emitting diode lantern.

Keywords

heat pipe wick thermal resistance light-emitting diode cooling system radiator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. K. Khanna, Fundamentals of Solid State Lighting, Taylor & Francis Group, New York (2014).CrossRefGoogle Scholar
  2. 2.
    Y. Huaiyu, S. Koh, H. Zeijl, A. W. J. Gielen, and Z. Guoqi, A review of passive thermal management of LED module, J. Semicond., 32, No. 1, 0140081–0140084 (2011).Google Scholar
  3. 3.
    Thermal Management of White LEDs: Building Technologies Program, Department of Energy, US, PNNL-SA-51901 (2007).Google Scholar
  4. 4.
    B. Zohuri, Heat Pipe Design and Technology: Modern Applications for Practical Thermal Management, 2nd edn., Springer Intern. Publ., Switzerland (2016).CrossRefGoogle Scholar
  5. 5.
    H. N. Chaudhrya, B. R. Hughesa, and S. A. Ghanib, A review of heat pipe systems for heat recovery and renewable energy applications, Renew. Sustain. Energy Rev., 16, No. 4, 2249–2259 (2012).CrossRefGoogle Scholar
  6. 6.
    L. L. Vasiliev, A. G. Kulakov, L. L. Vasiliev Jr., M. I. Rabetskii, and A. A. Antukh, Miniature heat pipes for thermal control of radio-electronic equipment, Heat Transf. Res., 38, Issue 3, 245–258 (2007).CrossRefGoogle Scholar
  7. 7.
    H . Lee, Тhermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells, John Wiley & Sons, Inc., New Jersey (2010).Google Scholar
  8. 8.
    A. Faghri, Heat pipes: review, opportunities and challenges, Front. Heat Pipes, 5, Issue 1, 1–48 (2014).CrossRefGoogle Scholar
  9. 9.
    D. Reay, R. J. McGlen, and P. Kew, Heat Pipes. Theory, Design and Application, Elsevier, Oxford (2014).Google Scholar
  10. 10.
    S. W. Chi, Heat Pipe Theory and Practice, McGraw-Hill, New York (1976).Google Scholar
  11. 11.
    L. L. Vasiliev and S. V. Konev, Heat Transmitting Pipes [in Russian], Nauka i Tekhnika, Minsk (1972).Google Scholar
  12. 12.
    R. I. Agladze, N. G. Gofman, and N. T. Kudryavtsev, Applied Electrochemistry [in Russian], Khimiya, Moscow (1975).Google Scholar
  13. 13.
    K. Delendik, N. Kolyago, O. Penyazkov, and O. Voitik, Determination of permissible heat fluxes in the heat pipe, in: AIP Conf. Proc., 1978, Issue 1, 470028–470031 (2018).Google Scholar
  14. 14.
    K. Delendik, O. Voitik, and N. Kolyago, Design of cooling system for high-power LED luminaire, in: AIP Conf. Proc., 2116, 030020–030023 (2019).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • K. I. Delendik
    • 1
  • N. V. Kolyago
    • 1
    Email author
  • O. G. Penyazkov
    • 1
  • O. L. Voitik
    • 1
  1. 1.A. V. Luikov Heat and Mass Transfer InstituteNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations