Advertisement

Journal of Engineering Physics and Thermophysics

, Volume 92, Issue 6, pp 1489–1500 | Cite as

Numerical Investigation of the Influence of Special Structures On Suppression of Pressure Pulsations in The Draft Tube of a High-Head Hydraulic Turbine

  • A. V. SentyabovEmail author
  • A. V. Minakov
  • D. V. Platonov
  • D. A. Dekterev
  • A. V. ZakharovEmail author
  • G. A. Semenov
Article
  • 8 Downloads

The authors have performed numerical simulation of pressure pulsations in the draft tube of a hydraulic turbine that are excited by large-scale vortex structures. Numerical simulation of unsteady transfer in the draft tube in different operating regimes of the turbine has been carried out. It has been shown that the structure of flow in the outlet diffuser corresponds to vortex-core flow. Calculated data have been compared with experimental results and their agreement has been shown. To suppress pressure pulsations, a study has been made of the influence of various structural inserts into the draft tube, such as fins, a cross piece, and a hollow cylinder in the draft-tube cone. Consideration has been given to the influence of various constructions on the structure of flow behind the wheel and on pressure pulsations on the draft-tube wall. A comparison has been made of the constructions and optimum parameters have been selected to stabilize the flow in the diffuser of the hydraulic-turbine draft tube.

Keywords

mathematical simulation turbulence detached eddy simulation pressure pulsations vortex-core precession hydraulic turbine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. J. Rheingans, Power swings in hydroelectric power plants, Trans. ASME, 62, No. 3, 171−184 (1940).Google Scholar
  2. 2.
    P. Deriaz, A contribution to the understanding of flow in draft tubes of Francis turbines, International Association for Hydraulic Research, Hydraulic Machinery and Equipment Symposium, France, Nice (1960), p. 13.Google Scholar
  3. 3.
    A. K. Gupta, D. J. Lilley, and N. Syred, Swirl Flows, Abacus Press, Tunbridge Wells, UK (1984).Google Scholar
  4. 4.
    B. Vonnegut, A vortex whistle, J. Acoust. Soc. Am., 26, 18–20 (1954).CrossRefGoogle Scholar
  5. 5.
    R. C. Chanaud, Observations of oscillatory motion in certain swirling flows, J. Fluid Mech., 21, 111−127 (1965).CrossRefGoogle Scholar
  6. 6.
    M. Nishi, T. Kubota, S. Matsunaga, and Y. Senoo, Study on swirl flow and surge in an elbow type draft tube, 10th IAHR Section Hydraulic Machinery, Equipment, and Cavitation, Tokyo (1980), Vol. 1, pp. 557–568.Google Scholar
  7. 7.
    P. Dorfler, M. Sick, and A. Coutu, Flow-Induced Pulsation and Vibration in Hydroelectric Machinery, Springer, London (2013).CrossRefGoogle Scholar
  8. 8.
    J. J. Cassidy, Experimental Study and Analysis of Draft Tube Surging, REC-OCE-69-5. Report No. HYD-591 (1969).Google Scholar
  9. 9.
    H. T. Falvey, Draft Tube Surges, REC-ERC-71-42, Colorado (1971), p. 25.Google Scholar
  10. 10.
    P. Ulith, A contribution to influencing the part-load behavior of Francis turbines by aeration and sigma-value, IAHR Symposium, Lausanne, Switzerland (1968), Paper No. B1.Google Scholar
  11. 11.
    S. Pejovic, Understanding the effects of draft tube vortex core resonance, Hydro Review Worldwide. HCI Publications, September 2000, pp. 28−33.Google Scholar
  12. 12.
    V. Biela, Draft tube fins, IAHR Section on Hydraulic Machinery and Cavitation, 19th Symposium, Singapore (1998), pp. 454-461.Google Scholar
  13. 13.
    W. Lecher and K. Baumann, Francis turbines at part-load with high back-pressure, IAHR Section Hydraulic Machinery, Equipment, and Cavitation, 4th Symposium, Lausanne (1968).Google Scholar
  14. 14.
    Kuldap Sing Sayann, Parameters Affecting the Performance of Draft Tube of Reaction Water Turbine, PhD Dissertation, Dept. of Mech. of Indian Institute of Technology, Bombay (1977).Google Scholar
  15. 15.
    P. R. Spalart, W.-H. Jou, M. Strelets, and S. R. Allmaras, Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach, in: C. Lue and Z. Lue (Eds.), Advances in DNS/LES, Proceedings of First AFOSR International Conference on DNS/LES, Ruston, LA, USA, August 4–8, 1997, Greyden Press, Columbus, OH (1997), pp. 137−147.Google Scholar
  16. 16.
    M. Strelets, Detached eddy simulation of massively separated flows, AIAA Paper, Paper 2001-0879 (2001), p. 19.Google Scholar
  17. 17.
    A. V. Minakov, D. V. Platonov, A. A. Dekterev, A. V. Sentyabov, and A. V. Zakharov, The analysis of unsteady flow structure and low frequency pressure pulsations in the high-head Francis turbines, Int. J. Heat Fluid Flow, 53, 183–194 (2015).CrossRefGoogle Scholar
  18. 18.
    A. A. Dekterev, A. A. Gavrilov, and A. V. Minakov, Numerical simulation of unsteady cavitating turbulent flow in water turbine, Proc. Conf.: 6th Int. Symp. on Turbulence, Heat and Mass Transfer, 2009, pp. 835–838.Google Scholar
  19. 19.
    A. Gavrilov, A. Dekterev, A. Sentyabov, A. Minakov, and D. Platonov, Application of hybrid methods to calculations of vortex precession in swirling flows, Notes Numer. Fluid Mech., 117, 449–459 (2012).Google Scholar
  20. 20.
    I. Kuznetsov, A. Zakharov, G. Orekhov, A. Minakov, A. Dekterev, and D. Platonov, Investigation of free discharge through the hydro units of high head Francis turbine, IOP Conf. Series: Earth and Environmental Science 15 (Part 5), 2012; DOI:  https://doi.org/10.1088/1755-1315/15/5/052002.CrossRefGoogle Scholar
  21. 21.
    A. V. Minakov, D. V. Platonov, A. A. Dekterev, A. V. Sentyabov, and A. V. Zakharov, The numerical simulation of low frequency pressure pulsations in the high-head Francis turbine, Comput. Fluids, 111, 197–205 (2015); DOI: https://doi.org/10.1016/j.compfluid.2015.01.007.CrossRefGoogle Scholar
  22. 22.
    V. B. Andreev, G. A. Bronovskii, I. S. Veremeenko, et al. (N. N. Kovalev Ed.), Hydraulic-Turbine Guide [in Russian], Mashinostroenie, Leningrad (1984) .Google Scholar
  23. 23.
    A. V. Sentyabov, A. A. Gavrilov, A. A. Dekterev, and A. V. Minakov, Numerical investigation of the vortex core precession in a model hydroturbine with the aid of hybrid methods for computation of turbulent flows, Thermophys. Aeromech., 21, No. 6, 707–717 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. V. Sentyabov
    • 1
    • 2
    Email author
  • A. V. Minakov
    • 1
    • 2
  • D. V. Platonov
    • 1
    • 2
  • D. A. Dekterev
    • 1
    • 2
  • A. V. Zakharov
    • 3
    Email author
  • G. A. Semenov
    • 3
  1. 1.S. S. Kutateladze Institute of ThermophysicsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia
  3. 3.PJSC Power MachinesSt. PetersburgRussia

Personalised recommendations