Advertisement

Journal of Engineering Physics and Thermophysics

, Volume 92, Issue 6, pp 1453–1465 | Cite as

Experimental Investigation of the Suppression of Crown and Ground Forest Fires

  • R. S. VolkovEmail author
  • N. P. Kopylov
  • G. V. Kuznetsov
  • I. R. Khasanov
Article
  • 2 Downloads

Results of experimental investigations on the suppression of the flame combustion and thermal decomposition of forest combustible materials by aerosol flows of a pure water and aqueous solutions are presented. The characteristics of some sprayers were determined and the densities of wetting of a fire hotbed, provided by them, were calculated. The times of extinguishing hotbeds of model crown and ground forest fi res were measured, and distributions of temperatures and heat flows in them were determined. It is shown that the efficiency of extinguishing a forest fire is mainly determined by the sizes of the aerosol droplets acting on it.

Keywords

crown and ground forest fires thermal decomposition fire suppression water droplets aerosol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. X. Viegas and A. Simeoni, Eruptive behaviour of forest fires, Fire Technol., 47, No. 2, 303–320 (2011).CrossRefGoogle Scholar
  2. 2.
    H. Wang, Analysis on downwind distribution of firebrands sourced from a wildland fire, Fire Technol., 47, No. 2, 321–340 (2011).CrossRefGoogle Scholar
  3. 3.
    M. E. Houssami, E. Mueller, A. Filkov, J. C. Thomas, N. Skowronski, M. R. Gallagher, K. Clark, R. Kremens, and A. Simeoni, Experimental procedures characterising firebrand generation in wildland fires, Fire Technol., 52, No. 3, 731–751 (2016).Google Scholar
  4. 4.
    D. E. Calkin, C. S. Stonesifer, M. P. Thompson, and C. W. McHugh, Large airtanker use and outcomes in suppressing wildland fires in the United States, Int. J. Wildland Fire, 23, No. 2, 259–271 (2014).CrossRefGoogle Scholar
  5. 5.
    T. Konishi, H. Kikugawa, Yu. Iwata, H. Koseki, K. Sagae, A. Ito, and K. Kato, Aerial fi refi ghting against urban fire: Mock-up house experiments of fi re suppression by helicopters, Fire Safety J., 43, No. 5, 363–375 (2008).CrossRefGoogle Scholar
  6. 6.
    P. A. Strizhak, Influence of droplet distribution in a water slug on the temperature and concentration of combustion products in its wake, J. Eng. Phys. Thermophys., 86, No. 4, 895–904 (2013).CrossRefGoogle Scholar
  7. 7.
    G. V. Kuznetsov and P. A. Strizhak, Heat and mass transfer in quenching the reaction of thermal decomposition of a forest combustible material with a group of water drops, J. Eng. Phys. Thermophys., 87, No. 3, 608–617 (2014).CrossRefGoogle Scholar
  8. 8.
    A. O. Zhdanova, G. V. Kuznetsov, and P. A. Strizhak, Numerical investigation of physicochemical processes occurringduring water evaporation in the surface layer pores of a forest combustible material, J. Eng. Phys. Thermophys., 87,No. 4, 773–781 (2014).CrossRefGoogle Scholar
  9. 9.
    N. P. Kopylov, G. M. Grozdov, I. R. Khasanov, and S. V. Gorshkov, Theoretical and experimental research of parameters of the water discharged for fire extinguishment by means of an IL-76 aircraft, Proc. Second Int. Seminar on Fire-and-Explosion Hazard of Substances and Venting of Deflagrations, Moscow (1998), pp. 559–564.Google Scholar
  10. 10.
    E. A. Moskvilin, Use of aircraft for suppression of forest fires, Pozhar. Bezopasnost′, No. 1, 89–92 (2009). 1465Google Scholar
  11. 11.
    N. P. Kopylov, I. R. Khasanov, A. E. Kuznetsov, D. V. Fedotkin, E. A. Moskvilin, P. A. Strizhak, and V. N. Karpov, Parameters of the throw-down of water from aircraft in the extinguishing of forest fires, Pozhar. Bezopasnost′, No. 2, 49–55 (2015).Google Scholar
  12. 12.
    J. Madrigal, M. Guijarro, C. Hernando, C. Díez, and E. Marino, Estimation of peak heat release rate of a forest fuel bed in outdoor laboratory conditions, J. Fire Sci., 29, No. 1, 53–70 (2011).CrossRefGoogle Scholar
  13. 13.
    K. J. Overholt, J. Cabrera, A. Kurzawski, and O. Ezekoye, Characterization of fuel properties and fire spread rates for little bluestem grass, Fire Technol., 50, No. 1, 9–38 (2014).CrossRefGoogle Scholar
  14. 14.
    V. Tihay-Felicelli, P. A. Santoni, T. Barboni, and L. Leonelli, Autoignition of dead shrub twigs: influence of diameter on ignition, Fire Technol., 52, No. 3, 897–929 (2016).CrossRefGoogle Scholar
  15. 15.
    P. Bartolia, A. Simeonia, H. Biteau, J. L. Torero, and P. A. Santoni, Determination of the main parameters influencing forest fuel combustion dynamics, Fire Safety J., 46, Nos. 1–2, 27–33 (2011).CrossRefGoogle Scholar
  16. 16.
    P. Bufacchia, G. C. Kriegera, and W. Mell, Numerical simulation of surface forest fire in Brazilian Amazon, Fire Safety J., 79, 44–56 (2016).CrossRefGoogle Scholar
  17. 17.
    J. Madrigal, C. Hernando, M. Guijarro, C. Díez, E. Marino, and A. J. De Castro, Evaluation of forest fuel flammability and combustion properties with an adapted mass loss calorimeter device, J. Fire Sci., 27, No. 4, 323–342 (2009).CrossRefGoogle Scholar
  18. 18.
    S. McAllister and M. Finney, Burning rates of wood cribs with implications for wildland fires, Fire Technol., 52, No. 6, 1755–1777 (2015).CrossRefGoogle Scholar
  19. 19.
    O. P. Korobeinichev, A. G. Shmakov, V. M. Shvartsberg, A. A. Chernov, S. A. Yakimov, K. P. Koutsenogii, and V. I. Makarov, Fire suppression by low-volatile chemically active fire suppressants using aerosol technology, Fire Safety J., 51, 102–109 (2012).CrossRefGoogle Scholar
  20. 20.
    R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, The influence of initial sizes and velocities of water droplets on transfer characteristics at high-temperature gas flow, Int. J. Heat Mass Transf., 79, 838–845 (2014).CrossRefGoogle Scholar
  21. 21.
    R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Experimental investigation of mixtures and foreign inclusions in water droplets influence on integral characteristics of their evaporation during motion through high-temperature gas area, Int. J. Therm. Sci., 88, 193–200 (2015).CrossRefGoogle Scholar
  22. 22.
    R. S. Volkov and P. A. Strizhak, The integral characteristics of the deceleration and entrainment of water droplets by the counter flow of high-temperature combustion products, Exp. Therm. Fluid Sci., 75, 54–65 (2016).CrossRefGoogle Scholar
  23. 23.
    Z. Ma, H. G. Merkus, and B. Scarlett, Particle-size analysis by laser diffraction with a complementary metal-oxide semiconductor pixel array, Appl. Optics, 39, No. 25, 4547–4556 (2000).CrossRefGoogle Scholar
  24. 24.
    J. P. Mitchell and M. Tservistas, Laser diffractometry and cascade impaction for nebulizer product characterization, Pharmeuropa Sci. Notes, 2, 49–52 (2006).Google Scholar
  25. 25.
    S. Dehaeck, H. Van Parys, A. Hubin, and J. P. A. J. van Beeck, Laser marked shadowgraphy: A novel optical planar technique for the study of microbubbles and droplets, Exp. Fluids, 47, No. 2, 333–341 (2009).CrossRefGoogle Scholar
  26. 26.
    H. Markus, S. Pentti, S. Tuomas, and N. Jouko, Recognition of highly overlapping ellipse-like bubble images, Meas. Sci. Technol., 16, 1760–1770 (2005).CrossRefGoogle Scholar
  27. 27.
    Y. K. Akhmetbekov, S. V. Alekseenko, V. M. Dulin, D. M. Markovich, and K. S. Pervunin, Planar fluorescence for round bubble imaging and its application for the study of an axisymmetric two-phase jet, Exp. Fluids, 48, 615 629 (2010).CrossRefGoogle Scholar
  28. 28.
    R. D. Keane and R. J. Adrian, Theory of cross-correlation analysis of PIV images, Appl. Sci. Res., 49, 191–215 (1992).CrossRefGoogle Scholar
  29. 29.
    J. Westerweel, Fundamentals of digital particle image velocimetry, Meas. Sci. Technol., 8, 1379–1392 (1997).CrossRefGoogle Scholar
  30. 30.
    T. V. Chagovets and S. W. Van Sciver, A study of thermal counterflow using particle tracking velocimetry, Phys. Fluids, 23, 107102 (2011).CrossRefGoogle Scholar
  31. 31.
    D. Damiani, E. Meillot, and D. Tarlet, A particle-tracking-velocimetry (PTV) investigation of liquid injection in a dc plasma jet, J. Therm. Spray Technol., 23, No. 3, 340–353 (2014).CrossRefGoogle Scholar
  32. 32.
    R. S. Volkov, G. V. Kuznetsov, P. A. Kuibin, and P. A. Strizhak, Weber numbers at various stages of water projectile transformation during free fall in air, Tech. Phys. Lett., 41, No. 10, 1019–1022 (2015).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • R. S. Volkov
    • 1
    Email author
  • N. P. Kopylov
    • 2
  • G. V. Kuznetsov
    • 1
  • I. R. Khasanov
    • 2
  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia
  2. 2.All-Russian Institute for Fire Protection of Ministry of Russian Federation for Civil DefenceEmergencies, and Elimination of Consequences of Natural DisastersBalashikhaRussia

Personalised recommendations