Advertisement

Journal of Engineering Physics and Thermophysics

, Volume 92, Issue 6, pp 1443–1445 | Cite as

The Second Moment of the Distribution Function of Nanoparticles in a Limited Region and Their Brownian Diffusion

  • S. P. FisenkoEmail author
NANOSTRUCTURES
  • 1 Downloads

The change of the second moment of the distribution function of nanoparticles in a square under the influence of Brownian diffusion has been studied numerically and analytically. It is shown that the second moment of the distribution function of nanoparticles in an equilibrium system is independent of time, which is an important factor to be taken into account in processing experimental data. It has been established that the second moment of the function of nanoparticles distribution in a nonequilibrium spatially limited system depends on time, with this dependence being nonlinear.

Keywords

Galerkin method scalar coeffi cient of Brownian diffusion method of variable directions characteristic time 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. N. Zubarev, V. Morozov, and G. Röpke, Statistical Mechanics of Nonequilibrium Processes: Basic Concepts, Kinetic Theory, John Wiley & Sons, New York (1996).zbMATHGoogle Scholar
  2. 2.
    S. P. Fisenko, Yu. A. Khodyko, and D. A. Takopulo, Some engineering applications of the Brownian diffusion of nanoparticles, in: Proc. Int. Conf. ″Nanomeeting–2015, World Scientifi c, Singapore (2015), pp. 155–157.Google Scholar
  3. 3.
    R. Balesku, Equilibrium and Nonequilibrium Statistical Mechanics, John Wiley & Sons, New York (1975).Google Scholar
  4. 4.
    F. S. Gentile, I. De Santo, G. D’Avino, L. Rossi, G. Romeo, F. Greco, P. A. Netti, and P. L. Maffettone, Hindered Brownian diffusion in a square-shaped geometry, J. Colloid Interface Sci., 447, 25–32 (2015).CrossRefGoogle Scholar
  5. 5.
    C. A. Fletcher, Computational Galerkin Method, Springer, New York (1984).CrossRefGoogle Scholar
  6. 6.
    V. M. Verzhbitskii, Numerical Methods [in Russian], Vysshaya Shkola, Moscow (2002).Google Scholar
  7. 7.
    S. P. Fisenko and Yu. A. Khodyko, Brownian diffusion of nanoparticles inside of a spherical droplet of variable radius, Dokl. Nats. Akad. Nauk Belarusi, 60, No. 6, 123–128 (2016).Google Scholar
  8. 8.
    S. P. Fisenko and Yu. A. Khodyko, Brownian diffusion inside a micron-sized droplet and the morphology of ensembles of nanoparticles, J. Eng. Phys. Thermophys., 86, No. 2, 349–355 (2013).CrossRefGoogle Scholar
  9. 9.
    S. E. Dromashko and S. P. Fisenko, Long-time computer videomicroscopy of alive cells: simulation of "metastatic spreading," in: Mathematical Methods in Engineering and Technology [in Russian], Izd. Politekh. Univ., St. Petersburg (2018), Vol. 2, pp. 93–96.Google Scholar
  10. 10.
    S. A. Rukolaine, A model of alternating ballistic Brownian transfer of particles and asymptotic approximation to it, Zh. Tekh. Fiz., 88, No. 9, 1304–1311 (2018).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of BelarusMinskBelarus

Personalised recommendations