Journal of Engineering Physics and Thermophysics

, Volume 92, Issue 6, pp 1385–1395 | Cite as

On the Relationship Between the Temperature Coefficient and the Relative Volatility for the Process of Rectification

  • A. M. TsirlinEmail author
  • I. A. SukinEmail author

The relationship between the temperature coefficient and the value of relative volatility has been considered for the process of rectification. Various methods to calculate the temperature coefficient have been given. The obtained results can be used for finding the optimum sequence of separation of a multicomponent mixture.


rectification temperature coefficient volatility separation multicomponent mixtures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. A. Aleksandrov, Rectifi cation and Absorption Apparatuses [in Russian], Khimiya, Moscow (1978).Google Scholar
  2. 2.
    N. I. Gel′perin, Basic Processes and Apparatuses of Chemical Technology [in Russian], Khimiya, Moscow (1981).Google Scholar
  3. 3.
    K. F. Pavlov, P. G. Romankov, and A. A. Noskov, Examples and Problems on the Course of the Processes and Apparatuses of Chemical Technology [in Russian], Khimiya, Leningrad (1987).Google Scholar
  4. 4.
    F. B. Petlyuk and L. A. Serafi mov, Multicomponent Rectifi cation. Theory and Calculation [in Russian], Khimiya, Moscow (1983).Google Scholar
  5. 5.
    A. N. Planovskii and P. I. Nikolaev, Processes and Apparatuses of Chemical and Petrochemical Technology. A Textbook for Universities [in Russian], Khimiya, Moscow (1987).Google Scholar
  6. 6.
    C. D. Holland, Fundamentals of Multicomponent Distillation, McGraw-Hill, New York (1981).Google Scholar
  7. 7.
    H. Z. Kister, Distillation Design, McGraw-Hill, New York (1992).Google Scholar
  8. 8.
    A. M. Tsirlin, Irreversible Assessments of Maximum Capabilities of Thermodynamic and Microeconomic Systems [in Russian], Nauka, Moscow (2003).Google Scholar
  9. 9.
    A. M. Tsirlin, I. A. Sukin, A. I. Balunov, and K. Schwalbe, The rule of temperature coeffi cients for selection of optimal separation sequence for multicomponent mixtures in thermal systems, J. Non-Equilib. Thermodyn., 42, No. 4, 359–369 (2017).CrossRefGoogle Scholar
  10. 10.
    A. M. Tsirlin, I. A. Sukin, and A. I. Balunov, Estimates of energy consumption and selection of optimal distillation sequence for multicomponent distillation, Theor. Found. Chem. Eng., 50, No. 3, 250–259 (2016).CrossRefGoogle Scholar
  11. 11.
    B. E. Poling, J. M. Prausnitz, and J. P. O′Connell, Properties of Gases and Liquids, McGraw-Hill, New York (2004).Google Scholar
  12. 12.
    P. J. Linstrom and W. G. Mallard (Eds.), NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg (2018).Google Scholar
  13. 13.
    I. Prigogine and D. Kondepudi, Modern Thermodynamics: From Heat Engines to Dissipative Structures, 2nd edn., Wiley (2014).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.A. K. Ailamazyan Program Systems InstituteRussian Academy of SciencesYaroslavl′ Oblast′Russia

Personalised recommendations