On the Possibility of Improving the Thermodynamic Characteristics of Multiflow Heat Transfer Systems

  • A. M. Tsirlin
  • A. A. Akhremenkov

The influence of the change in the phase state of part of flows on optimal organization and minimum possible entropy production in a multiflow heat-exchanging system is considered. For the Newtonian kinetics of heat transfer, computational formulas for optimal distribution of the total surface between heat exchangers, the algorithm of selection of contacting flows, and the ratio of absolute temperatures of heated and heating flows have been obtained.


multiflow heat transfer condensation/evaporation heat transfer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Ostrikov, A. V. Loginov, A. S. Popov, and I. N. Bolgova, Calculation and Design of Heat Exchangers [in Russian], Voronezhsk. Gos. Tekhnol. Akad., Voronezh (2011).Google Scholar
  2. 2.
    S. V. Alekseev, L. I. Yashurkaeva, and P. V. Besedin, Design and Calculation of Heat Exchangers [in Russian], Belgorodsk. Gos. Tekhnol. Univ., Belgorod (2008).Google Scholar
  3. 3.
    V. N. Taran, Calculation of multiflow heat exchangers by nonlinear pivot method, Tekh. Gazy, No. 1, 34–40 (2008).Google Scholar
  4. 4.
    A. G. Kasatkin, Basic Processes and Apparatuses of Chemical Technology [in Russian], 8th edn., Khimiya, Moscow (1971).Google Scholar
  5. 5.
    I. L. Ioffe, Design of Processes and Apparatuses of Chemical Technology [in Russian], Khimiya, Leningrad (1991).Google Scholar
  6. 6.
    I. I. Emel′yanov, N. N. Ziyatdinov, and G. M. Ostrovskii, Synthesis of an optimal heat transfer system in reconstruction of columns, Teor. Osn. Khim. Tekhnol., 50, No. 2, 184–193 (2016).Google Scholar
  7. 7.
    F. Bosnjakovic, Technical Thermodynamics, Holt R&W, New York (1965).Google Scholar
  8. 8.
    A. M. Tsirlin, A. A. Akhremenkov, and I. N. Grigorevskii, Minimal irreversibility, optimum distribution of the surface and heat load of a heat exchanging system, Teor. Osn. Khim. Tekhnol., 42, No. 1, 1–8 (1008).Google Scholar
  9. 9.
    A. M. Tsirlin, Ideal heat exchange systems, J. Eng. Phys. Thermophys., 90, No. 5, 1049–1097 (2017).CrossRefGoogle Scholar
  10. 10.
    A. M. Tsirlin, W. A. Mironova, S. A. Amelkin, and V. A. Kazakov, Finite-time thermodynamics: Conditions of minimal dissipation for thermodynamic processes with given rate, Phys. Rev. E, 58, 215–223 (1998).MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. M. Tsirlin, Optimal management of irreversible processes of heat and mass transfer, Izv. Akad. Nauk SSSR, Tekh. Kibern., 2, 171–179 (1991).Google Scholar
  12. 12.
    N. V. Kopchenova and I. A. Maron, Computational Mathematics in Examples and Problems [in Russian], 2nd edn., Pal′, St. Petersburg (2008).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. M. Tsirlin
    • 1
  • A. A. Akhremenkov
    • 1
  1. 1.A. K. Ailamazyan Institute of Program SystemsRussian Academy of SciencesYaroslavl’ DistrictRussia

Personalised recommendations