Skip to main content
Log in

Numerical Investigations of the Processes of Burning a Gaseous Fuel in the Furnace of the DE-10/14 Steam Water-Tube Boiler with a Secondary Tubular Radiator

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The processes of burning a gaseous fuel in the furnace of the DE-10/14 steam water-tube boiler have been investigated numerically. The temperature and velocity distributions of the gases in the furnace space of the boiler, as well as the concentrations of combustion components have been determined. It has been shown that placing a secondary radiator along the horizontal axis of the burner in the furnace space of the boiler promotes the formation of a uniform temperature field along the length of the furnace and a decrease in the temperature in its space, and the reverse flow of combustion products to the combustion front provides a decrease in the concentration of nitrogen oxides to 123–125 mg/m3 at the furnace outlet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. B. Varlamov, G. M. Lyubchik, and V. A. Malyarenko, Thermal-Power Plant and Ecological Aspects of Power Production [in Russian], Politekhnika, Kiev (2003).

    Google Scholar 

  2. V. M. Gubinskii, Metallurgical Furnaces [in Russian], NMetAU, Dnepropetrovsk (2006).

    Google Scholar 

  3. I. Ya. Sigal, Protection of the Air Basin in Burning Fuel [in Russian], Nedra, Leningrad (1988).

    Google Scholar 

  4. V. V. Denisov, I. A. Denisova, V. V. Gutenev, and L. N. Fesenko, Fundamentals of Engineering Ecology [in Russian], FENIKS, Moscow (2013).

    Google Scholar 

  5. P. V. Roslyakov, K. A. Pleshakov, and I. L. Ionin, Optimum condition for burning fuel with controlled chemical under-burning, Teploénergetika, No. 4, 17–22 (2010).

  6. A. A. Dolinskii, A. A. Khalatov, S. G. Kobzar′, O. A. Nazarenko, and A. A. Meshcheryakov, Use of computer simulation in inexpensive modernization of the NIISTU-5 boilers, Prom. Teplotekh., 29, No. 5, 80–91 (2007).

    Google Scholar 

  7. A. A. Khalatov and S. G. Kobzar′, Computer technologies in modernizing boilers and combustion chambers, Akva-Term., No. 1, 12–15 (2007).

  8. N. Frederick, R. K. Agrawal, P. E. Wood, and S. C. Wood, Induced Flue Gas Recirculation for NOx Control: Application on Boilers and Process Heaters, Report 03 ETEC, Energy Texas Industries Рress (2004).

  9. B. I. Basok, V. G. Demchenko, and M. P. Martynenko, Numerical simulation of the processes of aerodynamics in the hot-water boiler furnace with a secondary radiator, Prom. Teplotekh., No. 1, 17–22 (2006).

  10. A. S. Askarova, E. I. Karpenko, I. V. Loktionova, V. E. Messerle, and A. V. Ustimenko, Optimization of the combustion of power-station technologies, Therm. Eng., 51, No. 6, 488–493 (2004).

    Google Scholar 

  11. V. I. Shchelokov, V. V. Ladynichev, I. D. Liseikin, and A. V. Todorovich, Modernization of hot-water water-tube boilers of the PTVM and KVGM types, Novost. Teplosnab., No. 5(45) (2004); http:rosteplo.ru/Tech_stat/stat_Shadlon.php?id=1922.

  12. A. S. Askarova, S. A. Bolegenova, and V. Yu. Maksimov, Formation of harmful substances in the BKZ-75 combustion chamber of the Shakhty thermal electric plant, in: Proc. VIII All-Russia Conf. ″Combustion of Solid Fuel, Novosibirsk (2012), pp. 9.1–9.4.

  13. V. R. Kotler, E. D. Kruglyak, S. E. Belikov, and B. N. Vasil′ev, A simplified scheme of flue gases recirculation as a means for reducing releases of nitrogen oxides, Énergetika, No. 1, 16–17 (1995).

  14. R. M. Fatkullin, Estimation of energy losses in recirculation with feeding of flue gases to the blow fan suction, Teploénergetika, No. 2, 37–40 (1997).

  15. B. P. Ustimenko, B. K. Aliyarov, and E. K. Abubakirov, Fire Modeling of Pulverized Coal Furnaces [in Russian], Nauka, Alma-Ata (1982).

    Google Scholar 

  16. B. P. Ustimenko, K. B. Dzhakubov, V. O. Krol′, Numerical Simulation of the Aerodynamics and Combustion in Furnace Technological Facilities [in Russian], Nauka, Alma-Ata (1986).

    Google Scholar 

  17. S. V. Alekseenko, V. D. Goryachev, I. N. Gusev, V. M. Eroshenko, and V. B. Rabovskii, Numerical and experimental modeling of turbulent flows in furnace chambers, J. Eng. Phys. Thermophys., 59, No. 6, 1545–1552 (1990).

    Article  Google Scholar 

  18. M. L. German, V. A. Borodulya, E. F. Nogotov, and G. I. Pal′chenok, Engineering method for calculating temperature regime of shell boilers with a dead-end furnace, in: Proc. 4th Minsk Int. Forum ″Heat and Mass Transfer–MIF-2000, Vol. 2, Minsk (2000), pp. 21–30.

  19. S. A. Khaustov, A. S. Zavorin, and R. N. Fisenko, Numerical investigation of the processes in a shell furnace with a reversing flame, Izv. Tomsk. Polit. Univ., 322, No. 4, 43–47 (2013).

    Google Scholar 

  20. A. G. Mikhailov, Methods for calculating the heat transfer in boiler furnaces, Omsk. Nauch. Vestn., No. 3(70), 81–84 (2008).

  21. Ya. B. Zel′dovich, Mathematical Theory of Combustion and Explosion [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  22. A. D. Gosman, W. M. Pun, A. K. Runchal, D. B. Spalding, and M. Volfstein, Numerical Methods of Investigation of Viscous Fluid Flows [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  23. A. K. Gupta, D. G. Lilley, and N. Syred, Swirling Flows [Russian translation], Mir, Moscow (1987).

    Google Scholar 

  24. D. Anderson, J. C. Tannehill, and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer [Russian translation], Mir, Moscow (1990).

    MATH  Google Scholar 

  25. H. A. Jakobsen, Chemical Reactor Modeling, Springer (2008).

  26. N. Peters, Turbulent combustion, Cambridge University Press (2000).

  27. S. T. Surzhikov, Thermal Radiation of Gases and Plasma [in Russian], Izd. MGTU im. N. É. Baumana, Moscow (2004).

    Google Scholar 

  28. C. Fletcher, Computational Techniques in Fluid Dynamics [Russian translation, Mir, Moscow (1991).

  29. S. Patankar, Numerical Methods for Solving Problems of Heat Transfer and Fluid Dynamics [Russian translation], Énergoatomizdat, Moscow (1984).

    Google Scholar 

  30. B. E. Launder and D. B. Spalding, Lectures in Mathematical Models of Turbulence, Academic Press, London (1972).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Davidenko.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 92, No. 2, pp. 519–526, March–April, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Red’ko, A.A., Davidenko, A.V., Pavlovskaya, A.A. et al. Numerical Investigations of the Processes of Burning a Gaseous Fuel in the Furnace of the DE-10/14 Steam Water-Tube Boiler with a Secondary Tubular Radiator. J Eng Phys Thermophy 92, 500–507 (2019). https://doi.org/10.1007/s10891-019-01957-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-019-01957-z

Keywords

Navigation