Advertisement

Journal of Engineering Physics and Thermophysics

, Volume 91, Issue 5, pp 1295–1301 | Cite as

Synthesis of Carbon Nanotubes on a Shungite Substrate and Their Use for Lithium–Sulfur Batteries

  • T. S. Temirgaliyeva
  • M. Nazhipkyzy
  • A. Nurgain
  • Z. A. MansurovEmail author
  • Zh. B. Bakenov
Article
  • 14 Downloads

A shungite mineral has been used as a support material of catalyst particles to synthesize multiwalled carbon nanotubes (MWCNTs). Raman spectroscopy enabled us to follow the formation of MWCNTs. The morphology of synthesized MWCNTs was investigated by a scanning electron microscope and a transmission electron microscope. As a result of simple heat treatment at 300°C for 3 h in an inert atmosphere, a novel sulfur/multiwalled carbon nanotubes/polyacrylonitrile (S/MWCNT/PAN) composite was synthesized. These methods of obtaining MWCNTs and S/MWCNT/PAN composite based on heat treatment possess the advantages of simplicity and low cost. The introduction of MWCNTs into the composite gives a highly conductive and mechanically flexible framework with an enhanced electronic conductivity and the ability to absorb polysulfides between the Li anode and cathode, which leads to an enhanced cyclability and a higher coulombic efficiency. The cell with this S/MWCNT/PAN ternary composite cathode demonstrates a stable reversible specific discharge capacity of 800 mA·h·g–1 after 50 cycles at a battery C-rate of 0.2 C.

Keywords

multiwalled carbon nanotubes lithium–sulfur batteries composite CVD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. B. Ray, A. Z. Anvar, and A. H. Walt, Carbon nanotubes — The route toward application, Science, 297, No. 582, 787–792 (2002).Google Scholar
  2. 2.
    X. D. Yang, Fabrication and Properties of Uniformly Dispersed Carbon Nanotube Reinforced Al Composites, Tianjin University, Tianjin (2012).Google Scholar
  3. 3.
    Y. Zhang, Y. Zhao, T. N. Doan, A. Konarov, D. Gosselink, H. G. Soboleski, and P. Chen, A novel sulfur/polypyrrole/multi-walled carbon nanotube nanocomposite cathode with core — Shell tubular structure for lithium rechargeable batteries, Solid State Ionics, 238, 30–35 (2013).CrossRefGoogle Scholar
  4. 4.
    Y. Zhang, Y. Zhao, A. Yermukhambetova, Zh. Bakenov, and P. Chen, Ternary sulfur/polyacrylonitrile/Mg0.6Ni0.4O composite cathodes for high performance lithium/sulfur batteries, J. Mater. Chem., A1, 295–301 (2013).CrossRefGoogle Scholar
  5. 5.
    J. Wang, J. Yang, C. Wan, K. Du, J. Xie, and N. Xu, Sulfur composite cathode materials for rechargeable lithium batteries, Adv. Funct. Mater., 13, 487–492 (2003).CrossRefGoogle Scholar
  6. 6.
    M. Lin, L. Zh. Houlong, W. Shuya, E. H. Kenville, S. K. Mun, C. Gil, G. H. Richard, and A. A. Lynden, Enhanced Li–S batteries using amine-functionalized carbon nanotubes in the cathode, ACS Nano, 1, No. 10, 1050–1059 (2016).Google Scholar
  7. 7.
    U. Sh. Musina and V. V. Samonin, Carbon-mineral composition of Koksu shungite deposit of Kazakhstan [in Russian], Izv. St. Petersburg. Gos. Tekhnol. Inst., 49, No. 23, 79–82 (2014).Google Scholar
  8. 8.
    X.-G. Sun, X. Wang, R. T. Mayes, and S. Dai, Lithium–sulfur batteries based on nitrogen-doped carbon and an ionicliquid electrolyte, ChemSusChem, 5, 2079–2085 (2012).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • T. S. Temirgaliyeva
    • 1
    • 2
  • M. Nazhipkyzy
    • 1
    • 2
  • A. Nurgain
    • 2
  • Z. A. Mansurov
    • 1
    • 2
    Email author
  • Zh. B. Bakenov
    • 3
  1. 1.Al-Farabi Kazakh National UniversityAlmatyKazakhstan
  2. 2.Institute of Combustion ProblemsAlmatyKazakhstan
  3. 3.Nazarbayev University, National LaboratoryAstanaKazakhstan

Personalised recommendations