Advertisement

Influence of the Drag Coefficient of Particles on their Distribution in a Two-Dimensional Acoustic Resonator

  • D. A. Gubaidullin
  • P. P Osipov
  • R. R. Nasyrov
HEAT AND MASS TRANSFER IN DISPERSIVE AND POROUS MEDIA
  • 12 Downloads

A numerical study is made of the plane problem on the drift of a group of particles in the rectangular-resonator’s standing wave induced by harmonic oscillations of the left boundary at the first resonant frequency. The influence of the drag coefficient of particles on the dynamics and distribution of the particles in the resonator has been investigated. At certain drag coefficients, regions of acoustic capture of particles have been found. In these regions, the inherent particle drift is counterbalanced by the transfer by acoustic streaming. It has been shown that the particles share a common tendency to drift to resonator walls, where the gas velocity is minimum.

Keywords

acoustic streamings particle drift acoustic traps 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. I. Nigmatulin, Dynamics of Multiple Media [in Russian], Nauka, Moscow (1978). Parts I and II.Google Scholar
  2. 2.
    R. F. Ganiev and L. E. Ukrainskii, Nonlinear Wave Mechanics and Technologies [in Russian], Izd. R&C Dynamics, Moscow (2008).Google Scholar
  3. 3.
    M. A. Ilgamov, R. G. Zaripov, R. G. Galiullin, and V. B. Repin, Nonlinear oscillations of a gas in a tube, Appl. Mech. Rev., 49, No. 3, 137−154 (1996).CrossRefGoogle Scholar
  4. 4.
    D. A. Gubaidullin and P. P Osipov, Influence of hydrodynamic forces on the drift of an inclusion in wave fields, Probl. Énerg., Nos. 1−2, 3−13 (2010).Google Scholar
  5. 5.
    D. A. Gubaidullin and P. P Osipov, On certain regimes of inclusion drift in acoustic fields, J. Eng. Phys. Thermophys., 84, No. 2, 270−277 (2011).CrossRefGoogle Scholar
  6. 6.
    D. A. Gubaidullin and P. P. Ossipov, Numerical investigation of particle drift in acoustic resonator with periodic shock wave, Appl. Math. Comput., 219, 4535−4544 (2013).MathSciNetMATHGoogle Scholar
  7. 7.
    D. A. Gubaidullin and P. P Osipov, Influence of Reynolds and Strouhal numbers on the direction of the wave force acting on inclusions in a standing sinusoidal wave, J. Eng. Phys. Thermophys., 86, No. 1, 51−61 (2013).CrossRefGoogle Scholar
  8. 8.
    D. A. Gubaidullin, P. P Osipov, and A. N. Zakirov, Directional diagrams of the particle drift in a standing wave with account of the Basset force, J. Eng. Phys. Thermophys., 88, No. 3, 621−629 (2015).CrossRefGoogle Scholar
  9. 9.
    D. A. Gubaidullin, P. P Osipov, and R. R. Nasyrov, Influence of the position of a particle and of the drag coefficient on the drift velocity in an acoustic resonator, J. Eng. Phys. Thermophys., 89, No. 2, 410−416 (2016).CrossRefGoogle Scholar
  10. 10.
    D. A. Gubaidullin, P. P. Osipov, and R. R. Nasyrov, Numerical simulation of Schlichting streaming induced by standing wave in rectangular enclosure, LTP Coatings 2014 IOP Publishing Journal of Physics: Conference Series 567 (2014) 012017; DOI: https://doi.org/10.1088/1742-6596/567/1/012017.
  11. 11.
    M. K. Aktas and B. Farouk, Numerical simulation of acoustic streaming generated by finite-amplitude resonant oscillations in an enclosure, J. Acoust. Soc. Am., 116, Issue 5, 2822−2831 (2004).CrossRefGoogle Scholar
  12. 12.
    B. Tajik, A. Abbassi, M. Saffar-Avval, A. Abdullah, and H. Mohammad-Abadi, Numerical simulation of acoustic streaming for nonlinear standing ultrasonic wave in water inside axisymmetric enclosure, Eng. Appl. Comput. Fluid Mech., 6, No. 3, 366−382 (2012).Google Scholar
  13. 13.
    M. F. Hamilton, Yu. A. Ilinskii, and E. A. Zabolotskaya, Thermal effects on acoustic streaming in standing waves, J. Acoust. Soc. Am., 114, Issue 6, 3092−3096 (2003).CrossRefGoogle Scholar
  14. 14.
    A. L. Tukmakov, Distribution of solid particles in the acoustic field of a resonance tube in different regimes of excitation of oscillations, Teplofiz. Aéromekh., 12, No. 2, 219−227 (2005).Google Scholar
  15. 15.
    A. L. Tukmakov and D. A. Gubaidullin, Numerical simulation of the motion of solid particles in the nonlinear wave field of an acoustic resonator, Izv. Vyssh. Uchebn. Zaved., Probl. Énerg., Nos. 3−4, 3−13 (2008).Google Scholar
  16. 16.
    A. L. Tukmakov, Numerical simulation of the process of wave separation of solid particles in resonant oscillations of the gas in a closed resonator, Akust. Zh., 55, No. 3, 342−349 (2009).Google Scholar
  17. 17.
    A. Alexeev and C. Gutfinger, Aerosol deposition in periodic shock waves, Phys. Fluids, 16, Issue 4, 1028−1036 (2004).CrossRefMATHGoogle Scholar
  18. 18.
    P. Vainshtein and M. Shapiro, An acoustic trap for submicron aerosol particles, European Aerosol Conference, September 6−11, 2009. Abstract T074A01.Google Scholar
  19. 19.
    G. G. Chernyi, Gas Dynamics [in Russian], Nauka, Moscow (1988).Google Scholar
  20. 20.
    C. Fletcher, Computational Techniques for Fluid Dynamics. Vol. 2. Specific Techniques for Different Flow Categories [Russian translation], Mir, Moscow (1991).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • D. A. Gubaidullin
    • 1
  • P. P Osipov
    • 1
  • R. R. Nasyrov
    • 1
  1. 1.Institute of Mechanics and Mechanical Engineering, Kazan Scientific Center, Russian Academy of SciencesKazanRussia

Personalised recommendations