Advertisement

Account of Interfractional Heat Transfer in a Hyperbolic Model of a One-Velocity Heterogeneous Mixture

  • V. S. SurovEmail author
Article

A modified generalized equilibrium model of a one-velocity heterogeneous mixture has been presented in which account is taken of interfractional heat transfer. A characteristic analysis of the model′s equations has been made, and their hyperbolicity has been shown. The Prandtl–Meyer problem and the problem on air–droplet-mixture flow past a wedge has been solved on a curvilinear structured grid using the Godunov method with a linearized Riemannian solver. Results of numerical calculations have been compared with self-similar solutions.

Keywords

hyperbolic model of a mixture interfractional heat transfer Godunov method linearized Riemannian solver Prandtl–Meyer flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. I. Nigmatullin, Dynamics of Multiphase Media, Part I [in Russian], Nauka, Moscow (1987).Google Scholar
  2. 2.
    V. S. Surov, One-velocity model of a heterogeneous medium, Mat. Modelir., 13, No. 10, 27–42 (2001).MathSciNetzbMATHGoogle Scholar
  3. 3.
    J. Wackers and B. Koren, A fully conservative model for compressible two-fluid flow, Int. J. Numer. Methods Fluids, 47, 1337–1343 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    A. Murrone and H. Guillard, A five equation reduced model for compressible two phase flow problems, J. Comput. Phys., 202, 664–698 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    V. Deledicque and M. V. Papalexandris, A conservative approximation to compressible two-phase flow models in the stiff mechanical relaxation limit, J. Comput. Phys., 227, 9241–9270 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    R. Saurel, F. Petitpas, and R. A. Berry, Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures, J. Comput. Phys., 228, 1678–1712 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    J. J. Kreeft and B. Koren, A new formulation of Kapila′s five-equation model for compressible two-fluid flow, and its numerical treatment, J. Comput. Phys., 229, 6220–6242 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    V. S. Surov, One-velocity model of a heterogeneous medium with a hyperbolic adiabatic kernel, Zh. Vychisl. Mat. Mat. Fiz., 48, No. 6, 1111–1125 (2008).MathSciNetzbMATHGoogle Scholar
  9. 9.
    V. S. Surov and I. V. Berezanskii, About the divergent form of equations for a one-velocity multicomponent mixture, J. Eng. Phys. Thermophys., 88, No. 5, 1248–1255 (2015).CrossRefGoogle Scholar
  10. 10.
    S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Multidimensional Gas-Dynamics Problems [in Russian], Nauka, Moscow (1976).Google Scholar
  11. 11.
    G. Wallis, One-Dimensional Two-Phase Flow [Russian translation], Mir, Moscow (1972).Google Scholar
  12. 12.
    V. S. Surov, On a variant of the method of characteristics for calculating one-velocity flows of a multicomponent mixture, J. Eng. Phys. Thermophys., 83, No. 2, 366–372 (2010).CrossRefGoogle Scholar
  13. 13.
    V. S. Surov, On a method of approximate solution of the Riemann problem for a one-velocity flow of a multicomponent mixture, J. Eng. Phys. Thermophys., 83, No. 2, 373–379 (2010).CrossRefGoogle Scholar
  14. 14.
    E. F. Toro, Riemann solvers with evolved initial condition, Int. J. Numer. Methods Fluids, 52, 433–453 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Problems of Numerical Solution of Hyperbolic Systems of Equations [in Russian], 2nd supplemented and revised edn., Fizmatlit, Moscow (2012).Google Scholar
  16. 16.
    V. S. Surov, Riemann problem for the one-velocity model of a multicomponent mixture, Teplofiz. Vys. Temp., 47, No. 2, 283–291 (2009).Google Scholar
  17. 17.
    A. A. Gubaidullin, D. N. Dudko, and S. F. Urmancheev, Action of air shock waves on obstacles covered with a porous layer, Vychisl. Tekhnol., 6, No. 3, 7–20 (2001).zbMATHGoogle Scholar
  18. 18.
    V. S. Surov, Certain self-similar problems of flow of a one-velocity heterogeneous medium, J. Eng. Phys. Thermophys., 80, No. 6, 1237–1246 (2007).CrossRefGoogle Scholar
  19. 19.
    V. S. Surov, Shock adiabat on a one-velocity heterogeneous medium, J. Eng. Phys. Thermophys., 79, No. 5, 886–892 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.South-Ural State University (National Research Institute)ChelyabinskRussia

Personalised recommendations