Advertisement

Journal of Engineering Physics and Thermophysics

, Volume 88, Issue 5, pp 1239–1247 | Cite as

Numerical Investigation of the Duration of the Effect Exerted by Initial Regimes on the Process of Liquid Motion in a Pipeline

  • E. R. Ashrafova
Article

By using numerical methods, the duration of the effect exerted by initial regimes on the running state of a nonstationary process of liquid motion in a linear part of a pipeline has been investigated depending on the values of various parameters of this process. The process is described by a system of two hyperbolic-type partial differential equations.

Keywords

hyperbolic equation dissipation factor pipeline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1977).Google Scholar
  2. 2.
    A. N. Tikhonov, Theorems of singleness for the heat conduction equation, Mat. Sborn., 42, No. 2, 199–216 (1935).zbMATHMathSciNetGoogle Scholar
  3. 3.
    G. O. Vafodorova, Problems without initial conditions for one nonclassical equation, Differents. Uravneniya, 39, No. 2, 278–280 (2003).MathSciNetGoogle Scholar
  4. 4.
    G. O. Vafodorova, Problems without initial conditions for degenerate parabolic equations, Differ. Equ., 36, No. 12, 1876–1878 (2000).zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    A. E. Shishkov, Existence of growing at infinity generalized solutions of initial-boundary value problems for linear and quasilinear parabolic equations, Ukr. Mat. Zh., 37, No. 4, 473–481 (1985).MathSciNetGoogle Scholar
  6. 6.
    M. Bokalo, Dynamical problems without initial conditions for elliptic-parabolic equations in spatial unbounded domains, Electron. Differ. Equ., No. 178, 1–24 (2010). http://ejde.math.txstate.edu or http://ejde.math.unt.edu Ftp ejde. math.txstate.edu
  7. 7.
    E. I. Moiseev and G. O. Vafodorova, Problems without initial conditions for some differential equations, Differ. Equ., 38, No. 8, 1162–1165 (2002).zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Y. A. Ashrafova, A problem of optimal control of the processes with unknown initial conditions, in: Proc. IV Int. Conf. ″Problems of Cybernetics and Informatics, Baku, Azerbaijan, Vol. 4, 35–37 (2012).Google Scholar
  9. 9.
    K. R. Aida-zade and E. R. Ashrafova, Optimal control problems without initial conditions, in: Proc. III Int. Conf. ″Optimization and Applications″ (OPTIMA-2012), 23–30 September 2012, Koshta-da-Kaparika, Portugal, pp. 21–24.Google Scholar
  10. 10.
    K. R. Aida-zade and Y. R. Ashrafova, Optimal control for boundary-value problems without initial conditions, in: Proc. 2nd Int. Russian-Uzbek Symp. ″Mixed-Type Equations and Akin Problems of Analysis and Informatics, El′brus (2012), pp. 22–24.Google Scholar
  11. 11.
    A. I. Lobanov, T. K. Starozhilova, and G. T. Guriya, Numerical investigation of structure formation in blood coagulation, Mat. Model., 9, No. 8, 83–95 (1997).zbMATHGoogle Scholar
  12. 12.
    F. I. Ataullakhanov, G. T. Guria, V. I. Sarbash, and R. I. Volkova, Spatiotemporal dynamics of clotting and pattern formation in human blood, Biochim. Biophys. Acta, 1425, 453–468 (1998).CrossRefGoogle Scholar
  13. 13.
    I. A. Charnyi, Nonstationary Motion of a Real Liquid in Pipes [in Russian], Nedra, Moscow (1975).Google Scholar
  14. 14.
    X. C. Yu and Q. P. Li, Shutdown and restart transient flow characteristic study in offshore multiphase pipeline, J. Eng. Thermophys., 29, No. 2, 251–255 (2008).Google Scholar
  15. 15.
    K. R. Aida-zade and D. A. Asadova, Analysis of the regimes of controlling transient processes in pipelines, J. Eng. Phys. Thermophys., 85, No. 1, 131–140 (2012).CrossRefGoogle Scholar
  16. 16.
    K. R. Aida-zade and E. R. Ashrafova, Localization of the points of leakage in an oil main pipeline under nonstationary conditions, J. Eng. Phys. Thermophys., 85, No. 5, 1148–1156 (2012).CrossRefGoogle Scholar
  17. 17.
    I. V. Kudinov, V. A. Kudinov, and A. V. Eremin, Distribution of viscous liquid fl ow velocity in a pipeline on hydraulic shock, J. Eng. Phys. Thermophys., 86, No. 2, 410–417 (2013).CrossRefGoogle Scholar
  18. 18.
    A. N. Volobuev and A. P. Tolstonogov, Features of viscous-fluid flow in an elastic pipeline, J. Eng. Phys. Thermophys., 82, No. 4, 749–755.Google Scholar
  19. 19.
    A. A. Samarskii and A. V. Gulin, Numerical Methods [in Russian], Nauka, Moscow (1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Control Systems, National Academy of Sciences of AzerbaijanBakuAzerbaijan

Personalised recommendations