Journal of Engineering Physics and Thermophysics

, Volume 88, Issue 5, pp 1203–1209 | Cite as

Use of Weno Schemes for Simulation of the Reflected Shock Wave–Boundary Layer Interaction

Article

Numerical simulation of the shock wave–laminar boundary layer interaction is carried out on the basis of the model problem at different Reynolds numbers. The use of WENO schemes of high order of accuracy is demonstrated. The calculated shock-wave structure of the fl ow is compared with the data available in the literature and with the data obtained from TVD schemes. Criteria of accuracy of numerical calculations that are related to the position of shock-wave structures, and also the time of solution of the problem with various difference schemes, are discussed. Recommendations on practical use of difference schemes of high order of accuracy are given.

Keywords

shock wave boundary layer numerical simulation WENO schemes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. E. Green, Interaction between shock waves and turbulent boundary layers, Prog. Aerosp. Sci., 11, 235–340 (1970).CrossRefGoogle Scholar
  2. 2.
    G. S. Settles and L. J. Dodson, Supersonic and hypersonic shock/boundary-layer interaction database. AIAA J., 32, No. 7, 1377–1383 (1994).CrossRefGoogle Scholar
  3. 3.
    D. S. Dolling, Fifty years of shock wave/boundary layer interaction research: what next? AIAA J., 39, No. 8, 1517–1531 (2001).CrossRefGoogle Scholar
  4. 4.
    F. Thivet, D. D. Knight, and A. A. Zheltovodov, Computational of crossing-shock-wave/boundary-layer interactions with realizable two-equation turbulence models, in: Proc. 10th Int. Conf. on Methods of Aerophysical Research (ICMAR-2000), 9–16 July 2000, Novosibirsk, Russia (2000).Google Scholar
  5. 5.
    Y. Andreopoulos, J. H. Agui, and G. Brassulis, Shock wave and turbulence interactions, Annu. Rev. Fluid Mech., 32, 309–345 (2000).CrossRefGoogle Scholar
  6. 6.
    A. A. Zheltovodov, Some advances in research of shock wave turbulent boundary layer interactions, AIAA Paper, No. 2006–0496 (2006).Google Scholar
  7. 7.
    A. A. Zheltovodov, Laws of development and capabilities of numerical simulation of supersonic turbulent separating flows, Aviats.-Kosm. Tekh. Tekhnol., No. 5 (92), 95–107 (2012).Google Scholar
  8. 8.
    R. Hannappel, T. Hauser, and R. Friedrich, A comparison of ENO and TVD schemes for computation of shock–turbulence interaction, J. Comput. Phys., 121, No. 1, 176–184 (1995).MATHCrossRefGoogle Scholar
  9. 9.
    I. A. Bedarev and N. N. Fedorova, Investigation of the factors influencing the quality of prediction of turbulent separating flows, Vych. Tekhnol., 4, No. 1, 14–32 (1999).MATHGoogle Scholar
  10. 10.
    H. Kleine, L. G. Lyakhov, L. G. Gvozdeva, and H. Gronig, Bifurcation of a reflected shock wave in a shock tube, in: Proc. 18th Int. Symp. on Shock Waves, 21–26 July 1991, Sendai, Japan; Springer-Verlag, Berlin (1991), pp. 261–267.Google Scholar
  11. 11.
    Y. S. Weber, E. S. Oran, J. P. Boris, and J. D. Anderson, The numerical simulation of shock bifurcation near the end wall of a shock tube, Phys. Fluids, 7, No. 10, 2475–2488 (1995).MATHCrossRefGoogle Scholar
  12. 12.
    G. J. Wilson, S. P. Sharma, and W. D. Gillespie, Time-dependent simulation of reflected-shock/boundary layer interaction in shock tubes, in: Proc. 19th Int. Symp. on Shock Waves, 26–30 July 1993, Marseille, France; Springer-Verlag, Berlin (1993), pp. 439–444.Google Scholar
  13. 13.
    V. Daru and C. Tenaud, Evaluation of TVD high resolution schemes for unsteady viscous shocked flows, Comput. Fluids, 30, No. 1, 89–113 (2001).MATHCrossRefGoogle Scholar
  14. 14.
    B. Sjogreen and H. C. Yee, Variable high order multiblock overlapping grid methods for mixed steady and unsteady multiscale viscous flow, Commun. Comput. Phys., 5, Nos. 2–4, 730–744 (2009).Google Scholar
  15. 15.
    K. N. Volkov and V. N. Emel′yanov, Computational Technologies in Problems of Fluid Mechanics [in Russian], Fizmatlit, Moscow (2012).Google Scholar
  16. 16.
    K. N. Volkov, Yu. N. Deryugin, V. N. Emel′yanov, A. S. Kozelkov, A. G. Karpenko, and I. V. Teterina, Acceleration of Gasdynamic Calculations on Unstructured Grids [in Russian], Fizmatlit, Moscow (2013).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia
  2. 2.School of Mechanical and Automotive Engineering, Faculty of Science, Engineering, and ComputingKingston UniversityLondonUK

Personalised recommendations