Advertisement

Experimental Investigation of the Specific Features of Formation of Cavitation Zones in Intense Ultrasound Fields

  • B. I. Bakhtin
  • A. I. IvashovEmail author
  • A. V. Kuznetsov
  • A. S. Skorokhodov
Article

We have investigated the specific features of excitation and formation of cavitation zones in ultrasound fields with a sound power density of up to 37 W/cm2 generated by a rod radiator with a power consumption of up to 5 kW. The influence of hydrodynamical flows generated in a liquid medium by the rod waveguide itself on the formation and characteristics of cavitation zones in an intense ultrasound field has been considered for the first time. The possibility of increasing the physical activity of cavitation by introducing activating additives into the medium has been explored. On the basis of the investigations made, proposals have been formulated for increasing significantly the cavitation zone activity and the efficiency of cavitation treatment of media and materials.

Keywords

ultrasonically induced cavitation ultrasonic radiator cavitation zone cavitation activity cavitation bubbles cumulative microjets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Carlin, Ultrasound [Russian translation], IL, Moscow (1950).Google Scholar
  2. 2.
    L. Bergman, Ultrasound and Its Application in Science and Industry [Russian translation], IL, Moscow (1956).Google Scholar
  3. 3.
    W. P. Mason (Ed.), Physical Acoustics, Vol. 1. Principles and Methods [Russian translation], Mir, Moscow (1967).Google Scholar
  4. 4.
    L. D. Rozenberg, Powerful Ultrasonic Fields [Russian translation], Nauka, Moscow (1968).Google Scholar
  5. 5.
    I. E. Él′piner, Ultrasound: Physicochemical and Biological Action [in Russian], Fizmatgiz, Moscow (1963).Google Scholar
  6. 6.
    M. A. Margulis, Principles of the Sound Chemistry [in Russian], Vysshaya Shkola, Moscow (1984).Google Scholar
  7. 7.
    M. A. Margulis, Sonoluminescence, Usp. Fiz. Nauk, 170, No. 3, 263–287 (2000).CrossRefGoogle Scholar
  8. 8.
    B. G. Novitskii, Application of Acoustic Vibrations in Chemical–Technological Processes [in Russian], Khimiya, Moscow (1983).Google Scholar
  9. 9.
    B. I. Bakhtin, A. V. Desyatov, A. P. Kubyshkin, and A. S. Skorokhodov, Features of cavitation and cavitation erosion of the waveguides of powerful ultrasonic units at a high pressure of the medium, Inzh.-Fiz. Zh., 81, No. 4, 690–695 (2008).Google Scholar
  10. 10.
    B. I. Bakhtin, A. V. Desyatov, O. I. Korba, A. P. Kubyshkin, and A. S. Skorokhodov, Low-temperature cracking of hydrocarbons in cavitation ultrasound fi elds, Mir. Nefteprod., No. 6, 14–18 (2009).Google Scholar
  11. 11.
    Y. Matsumoto, Micro bubble and bubble cluster dynamics in ultrasound fi eld, in: Proc. 16th Int. Symp. on Nonlinear Acoustic ISNA 16, 19–23 August, 2002, Moscow State University, Vol. 2, pp. 963–970.Google Scholar
  12. 12.
    E. A. Bushmanov, V. Yu. Velikodnyi, V. P. Vorotilin, I. B. Timofeev, Yu. G. Yanovskii, and D. Van Vi, On the possibility of upgrading the characteristics of activated porous fuel by using ionization processes in a dielectric cavitator, Prikl. Fiz., No. 5, 49–54 (2003).Google Scholar
  13. 13.
    V. G. Kozlov, Experimental Investigation of the Averaged Vibrational Dynamics of an Incompressible Fluid, Doctoral Dissertation (in Physics and Mathematics), Permsk. Gos. Univ., Perm′ (1997).Google Scholar
  14. 14.
    A. Moussatov, C. Grenger, and B. Dubus, Characterization of cavitation fi eld in ultrasonic reactor, in: Proc. 16th Int. Symp. on Nonlinear Acoustic ISNA 16, Moscow State University, 19–23 August, 2002, Vol. 2, pp. 1023–1026.Google Scholar
  15. 15.
    V. N. Skokov, V. P. Koverda, A. V. Reshetnikov, and A. V. Vinogradov, Critical behavior in cavitation of liquids in an ultrasound field, Ext. Abstr. 4th Russian Nat. Heat Mass Transfer Conf., October 23–27, 2006.Google Scholar
  16. 16.
    G. I. Kuvshinov and P. P. Prokhorenko, Acoustic Cavitation near Solid Surfaces [in Russian], Navuka i Tékhnika, Minsk (1990).Google Scholar
  17. 17.
    K. Pris, Erosion [Russian translation], Mir, Moscow (1982).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • B. I. Bakhtin
    • 1
  • A. I. Ivashov
    • 2
    Email author
  • A. V. Kuznetsov
    • 2
  • A. S. Skorokhodov
    • 1
  1. 1.M. V. Keldysh Research CenterMoscowRussia
  2. 2.N. É. Bauman State Technical UniversityMoscowRussia

Personalised recommendations