The Journal of Economic Inequality

, Volume 16, Issue 3, pp 439–454 | Cite as

Vulnerability to poverty revisited: Flexible modeling and better predictive performance

  • Maike HohbergEmail author
  • Katja Landau
  • Thomas Kneib
  • Stephan Klasen
  • Walter Zucchini
Open Access


This paper analyzes several modifications to improve a simple measure of vulnerability as expected poverty. Firstly, in order to model income, we apply distributional regression relating potentially each parameter of the conditional income distribution to the covariates. Secondly, we determine the vulnerability cutoff endogenously instead of defining a household as vulnerable if its probability of being poor in the next period is larger than 0.5. For this purpose, we employ the receiver operating characteristic curve that is able to consider prerequisites according to a particular targeting mechanism. Using long-term panel data from Germany, we build both mean and distributional regression models with the established 0.5 probability cutoff and our vulnerability cutoff. We find that our new cutoff considerably increases predictive performance. Placing the income regression model into the distributional regression framework does not improve predictions further but has the advantage of a coherent model where parameters are estimated simultaneously replacing the original three step estimation approach.


Vulnerability to poverty Distributional regression Generalized additive model for location Scale and shape Receiver operating characteristic curve 



We thank two anonymous referees and Stephen Jenkins for helpful comments on earlier versions of this paper. We are grateful for funding from the Ministry of Science and Culture (Lower Saxony).


  1. Amemiya, T.: The maximum likelihood and the nonlinear three-stage least squares estimator in the general nonlinear simultaneous equation model. Econometrica 45(4), 955 (1977)CrossRefGoogle Scholar
  2. Atkinson, A.B.: Social indicators: The EU and social inclusion. Oxford University Press, Oxford (2002)CrossRefGoogle Scholar
  3. Bergolo, M., Cruces, G., Ham, A.: Assessing the predictive power of vulnerability measures: Evidence from panel data for Argentina and Chile. J. Income Distrib. 21(1), 28–64 (2012)Google Scholar
  4. Biewen, M., Jenkins, S.P.: A framework for the decomposition of poverty differences with an application to poverty differences between countries. Empir. Econ0 30(2), 331–358 (2005)CrossRefGoogle Scholar
  5. Calvo, C., Dercon, S.: Vulnerability to individual and aggregate poverty. Soc. Choice Welf. 41(4), 721–740 (2013)CrossRefGoogle Scholar
  6. Celidoni, M.: Vulnerability to poverty: An empirical comparison of alternative measures. Appl. Econ. 45, 1493–1506 (2013)CrossRefGoogle Scholar
  7. Chaudhuri, S.: Assessing vulnerability to poverty: concepts empirical methods and illustrative examples. Columbia University, Mimeo (2003)Google Scholar
  8. Chaudhuri, S., Jalan, J., Suryahadi, A.: Assessing household vulnerability to poverty from cross-sectional data: A methodology and estimates from Indonesia. Discussion Paper Series 0102-52 Department of Economics. Columbia University, New York (2002)Google Scholar
  9. Christiaensen, L.J., Subbarao, K.: Towards an understanding of household vulnerability in rural Kenya. J. Afr. Econ. 14(4), 520–558 (2005)CrossRefGoogle Scholar
  10. Dutta, I., Foster, J., Mishra, A.: On measuring vulnerability to poverty. Soc. Choice Welf. 37(4), 743–761 (2011)CrossRefGoogle Scholar
  11. Egan, J.P.: Signal Detection Theory and ROC Analysis. Academic Press Series in Cognition and Perception Academic Press. NY, New York (1975)Google Scholar
  12. Eilers, P.H.C., Marx, B.D.: Flexible smoothing with B-splines and penalties. Stat. Sci. 11(2), 89–121 (1996)CrossRefGoogle Scholar
  13. Feeny, S., McDonald, L.: Vulnerability to multidimensional poverty: Findings from households in Melanesia. J. Dev. Stud. 52(3), 447–464 (2016)CrossRefGoogle Scholar
  14. Frick, J.R., Jenkins, S.P., Lillard, D.R., Lipps, O., Wooden, M.: Die internationale Einbettung des Sozio-oekonomischen Panels (SOEP) im Rahmen des Cross-National Equivalent File (CNEF). Vierteljahrsh. Wirtschaftsforschung 77(3), 110–129 (2008)CrossRefGoogle Scholar
  15. Gaiha, R., Imai, K.: Measuring vulnerability and poverty: Estimates for rural India. Research Paper 2008/040 UNU-WIDER. Helsinki, Finland (2008)Google Scholar
  16. Günther, I., Harttgen, K.: Estimating households vulnerability to idiosyncratic and covariate shocks: A novel method applied in Madagascar. World Dev. 37(7), 1222–1234 (2009)CrossRefGoogle Scholar
  17. Hoddinott, J., Quisumbing, A.: Methods for microeconometric risk and vulnerability assessments. Social Protection Discussion Paper Series 0324 The World Bank. DC, Washington (2003)Google Scholar
  18. Jha, R., Dang, T.: Vulnerability to poverty in Papua New Guinea in 1996. Asian Econ. J. 24(3), 235–251 (2010)CrossRefGoogle Scholar
  19. Klasen, S., Lange, S.: How narrowly should anti-poverty programs be targeted? Simulation evidence from Bolivia and Indonesia. Courant Research Centre: Poverty, Equity and Growth - Discussion Papers 213, Courant Research Centre PEG (2016)Google Scholar
  20. Klasen, S., Waibel, H.: Vulnerability to poverty. Palgrave Macmillan, UK, London (2013)CrossRefGoogle Scholar
  21. Klein, N., Kneib, T., Lang, S., Sohn, A.: Bayesian structured additive distributional regression with an application to regional income inequality in Germany. Ann. Appl. Stat. 9(2), 1024–1052 (2015)CrossRefGoogle Scholar
  22. Krause, P., Ritz, D.: EU-Indikatoren zur sozialen Inklusion in Deutschland. Vierteljahrsh. Wirtschaftsforschung 75(1), 152–173 (2006)CrossRefGoogle Scholar
  23. Landau, K.: Messung der Vulnerabilität der Armut: Eine statistische Analyse mit deutschen Paneldaten Dissertation. Universität Göttingen, Göttingen (2012)Google Scholar
  24. Ligon, E., Schechter, L.: Measuring vulnerability. Econ. J. 113(486), C95–C102 (2003)CrossRefGoogle Scholar
  25. Ligon, E., Schechter, L.: Evaluating different approaches to estimating vulnerability. Social Protection Discussion Paper Series 0410 The World Bank. DC, Washington (2004)Google Scholar
  26. McCarthy, N., Brubaker, J., De La Fuente, A.: Vulnerability to poverty in rural Malawi. Policy Research Working Paper WPS7769 The World Bank. DC, Washington (2016)Google Scholar
  27. McDonald, J.B., Ransom, M.: The Generalized Beta Distribution as a Model for the Distribution of Income: Estimation of Related Measures of Inequality. In: Chotikapanich, D. (ed.) Modeling Income Distributions and Lorenz Curves, Economic Studies in Equality, Social Exclusion and Well-Being, vol. 5, pp 147–166. Springer, New York (2008)Google Scholar
  28. Moser, C.O.: The asset vulnerability framework: Reassessing urban poverty reduction strategies. World Dev. 26(1), 1–19 (1998)CrossRefGoogle Scholar
  29. Novignon, J., Nonvignon, J., Mussa, R., Chiwaula, L.S.: Health and vulnerability to poverty in Ghana: evidence from the Ghana living standards survey round 5. Health Econ. Rev. 2, 11 (2012)CrossRefGoogle Scholar
  30. Pritchett, L., Suryahadi, A., Sumarto, S.: Quantifying vulnerability to poverty: A proposed measure, applied to Indonesia. Policy Research Working Paper WPS2437 The World Bank. DC, Washington (2000)Google Scholar
  31. Ravallion, M.: How relevant is targeting to the success of an antipoverty program? World Bank Res. Obs. 24(2), 205–231 (2009)CrossRefGoogle Scholar
  32. Rigby, R.A., Stasinopoulos, D.M.: Generalized additive models for location, scale and shape. J. Royal Stat Soc.: Ser. C (Appl. Stat.) 54(3), 507–554 (2005)CrossRefGoogle Scholar
  33. Selezneva, E., Van Kerm, P.: A distribution-sensitive examination of the gender wage gap in Germany. J. Econ. Inequal. 14(1), 21–40 (2016)CrossRefGoogle Scholar
  34. Skoufias, E., Quisumbing, A.R.: Consumption insurance and vulnerability to poverty: A synthesis of the evidence from Bangladesh, Ethiopia, Mali, Mexico and Russia. Eur. J. Dev. Res. 17(1), 24–58 (2005)CrossRefGoogle Scholar
  35. Sohn, A., Klein, N., Kneib, T.: A Semiparametric Analysis of Conditional Income Distributions. Schmollers Jahrbuch 135, Proceedings of the 11th International Socio-Economic Panel User Conference (SOEP 2014) (2015)Google Scholar
  36. Stasinopoulos, D.M., Rigby, R.A.: Generalized additive models for location scale and shape (GAMLSS) in R. J. Stat. Softw. 23(7) (2007)Google Scholar
  37. Stauder, J., Hüning, W.: Die Messung von Äquivalenzeinkommen und Armutsquoten auf der Basis des Mikrozensus. Statistische Analysen und Studien NRW 13 (2004)Google Scholar
  38. Suryahadi, A., Sumarto, S.: Poverty and vulnerability in Indonesia before and after the economic crisis. Asian Econ. J. 17(1), 45–64 (2003)CrossRefGoogle Scholar
  39. Thi Nguyen, K.A., Jolly, C.M., Bui, C.T.P.N., Le, T.H.T.: Climate change, rural household food consumption and vulnerability: The case of Ben Tre province in Vietnam. Agric. Econ. Rev. 16(2), 95–109 (2015)Google Scholar
  40. Thompson, M.L., Zucchini, W.: On the statistical analysis of ROC curves. Stat. Med. 8(10), 1277–1290 (1989)CrossRefGoogle Scholar
  41. Zereyesus, Y.A., Embaye, W.T., Tsiboe, F., Amanor-Boadu, V.: Implications of non-farm work to vulnerability to food poverty-recent evidence from northern Ghana. World Dev. 91, 113–124 (2017)CrossRefGoogle Scholar
  42. Zhang, Y., Wan, G.: How precisely can we estimate vulnerability to poverty? Oxf. Dev. Stud. 37(3), 277–287 (2009)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Chair of StatisticsUniversity of GoettingenGoettingenGermany
  2. 2.Chair of Development EconomicsUniversity of GoettingenGoettingenGermany

Personalised recommendations