The Journal of Economic Inequality

, Volume 13, Issue 2, pp 309–316 | Cite as

Ignorance, lotteries, and measures of economic inequality

  • Christopher J. BennettEmail author
  • Ričardas Zitikis


Towards further enhancing the conceptual unification of the literature on risk and inequality, we demonstrate that a number of existing inequality indices arise naturally from a Harsanyi-inspired model of choice under risk, whereby individuals act as expected (reference-dependent) utility maximizers in the face of an income quantile lottery. Among other things, our reformulation gives rise to a novel reinterpretation of these classical indices as measures of the desirability of redistribution in society.


Redistribution Inequality Lotteries Veil of ignorance Tilted lotteries Lorenz curve Atkinson index Donaldson-Weymark index Gini index 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson, A.B.: On the measurement of inequality. J. Econ. Theory 2, 244–263 (1970)CrossRefGoogle Scholar
  2. Bennett, C.J., Hatzimasoura, C.: Poverty measurement with ordinal data. The George Washington University Institute for International Economic Policy. Working Paper No. 2011-14 (2011)Google Scholar
  3. Chakravarty, S.R.: Extended Gini indices of inequality. Int. Econ. Rev. 29, 147–156 (1988)CrossRefGoogle Scholar
  4. Chew, S.H.: A generalization of the quasilinear mean with applications to the measurement of income inequality and decision theory resolving the Allais paradox. Econometrica 51, 1065–1092 (1983)CrossRefGoogle Scholar
  5. Donaldson, D., Weymark, J.A.: A single-parameter generalization of the Gini indices of inequality. J. Econ. Theory 22, 67–86 (1980)CrossRefGoogle Scholar
  6. Foster, J., Greer, J., Thorbecke, E.: A class of decomposable poverty measures. Econometrica 52(3), 761–765 (1984)CrossRefGoogle Scholar
  7. Furman, E., Zitikis, R.: Weighted premium calculation principles. Insur.: Math. Econ. 42, 459–465 (2008)Google Scholar
  8. Furman, E., Zitikis, R.: Weighted risk capital allocations. Insur.: Math. Econ. 43, 263–269 (2008)Google Scholar
  9. Gajdos, T., Kandil, F.: The ignorant observer. Soc. Choice Welf. 31, 193–232 (2008)CrossRefGoogle Scholar
  10. Gajdos, T., Weymark, J.A.: Introduction to inequality and risk. J. Econ. Theory 147, 1313–1330 (2012)CrossRefGoogle Scholar
  11. Gastwirth, J. L.: A general definition of the Lorenz curve. Econometrica 39, 1037–1039 (1971)CrossRefGoogle Scholar
  12. Giorgi, G.-M.: Bibliographic portrait of the Gini concentration ratio. Metron 48, 183–221 (1990)Google Scholar
  13. Giorgi, G.-M.: A fresh look at the topical interest of the Gini concentration ratio. Metron 51, 83–98 (1993)Google Scholar
  14. Harsanyi, J.C.: Cardinal utility in welfare economics and in the theory of risk-taking. J. Polit. Econ. 61, 434–435 (1953)CrossRefGoogle Scholar
  15. Harsanyi, J.C.: Can the maximin principle serve as a basis for morality? A critique of John Rawls’s theory. Am. Polit. Sci. Rev. 69, 594–606 (1975)CrossRefGoogle Scholar
  16. Koszegi, B., Rabin, M.: A model of reference-dependent preferences. Q. J. Econ. 121, 1133–1165 (2006)CrossRefGoogle Scholar
  17. Kumaraswamy, P.: A generalized probability density function for double-bounded random processes. J. Hydrol. 46, 79–88 (1980)CrossRefGoogle Scholar
  18. Machina, M.: Nonexpected utility theory. In: Teugels, J.L., Sundt, B. (eds.) Encyclopedia of Actuarial Science, pp. 1173–1179. Wiley, New York (2004)Google Scholar
  19. Machina, M.: Non-expected utility theory. In: Durlauf, S.N., Blume, L.E. (eds.) The New Palgrave Dictionary of Economics. Second Edition, pp. 74–84. Palgrave Macmillan, New York (2008)Google Scholar
  20. Mehran, F.: Linear measures of income inequality. Econometrica 44, 805–809 (1976)CrossRefGoogle Scholar
  21. Puppe, C.: Distorted probabilities and choice under risk. Springer, Berlin (1991)Google Scholar
  22. Rawls, J.: A Theory of Justice. Harvard University Press, Cambridge, MA (1971)Google Scholar
  23. Rothschild, M., Stiglitz, J.E.: Increasing risk: I. A definition. J. Econ. Theory 2, 225–243 (1970)CrossRefGoogle Scholar
  24. Weymark, J.A.: Generalized Gini inequality indices. Math. Soc. Sci. 1, 409–430 (1981)CrossRefGoogle Scholar
  25. Weymark, J.A.: John Harsanyi’s contributions to social choice and welfare economics. Soc. Choice Welf. 12, 313–318 (1995)Google Scholar
  26. Weymark, J.A.: John C. H. In: Crimmins, J.E. (ed.) The Bloomsbury Encyclopedia of Utilitarianism, pp. 213–216. Bloomsbury Academic, London and New York (2013)Google Scholar
  27. Yitzhaki, S., Schechtman, E.: The Gini methodology: A primer on a statistical methodology. Springer, New York (2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Bates White Economic ConsultingWashingtonUSA
  2. 2.Department of Statistical and Actuarial SciencesUniversity of Western OntarioLondonCanada

Personalised recommendations