The Journal of Economic Inequality

, Volume 12, Issue 2, pp 163–189 | Cite as

Kernel density estimation on grouped data: the case of poverty assessment

Article

Abstract

Grouped data have been widely used to analyze the global income distribution because individual records from nationally representative household surveys are often unavailable. In this paper we evaluate the performance of nonparametric density smoothing techniques, in particular kernel density estimation, in estimating poverty from grouped data. Using Monte Carlo simulations, we show that kernel density estimation gives rise to nontrivial biases in estimated poverty levels that depend on the bandwidth, kernel, poverty indicator, size of the dataset, and data generating process. Furthermore, the empirical bias in the poverty headcount ratio critically depends on the poverty line. We also undertake a sensitivity analysis of global poverty estimates to changes in the bandwidth and show that they vary widely with it. A comparison of kernel density estimation with parametric estimation of the Lorenz curve, also applied to grouped data, suggests that the latter fares better and should be the preferred approach.

Keywords

Kernel density estimation Lorenz curve Grouped data Income distribution Global poverty 

JEL Classifications

I32 D31 C14 C15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10888_2012_9220_MOESM1_ESM.pdf (442 kb)
(PDF 441 kb)

References

  1. 1.
    Abdelkrim, A., Duclos, J.-Y.: DASP: distributive analysis stata package. PEP, World Bank, UNDP and Université Laval. Available online at http://dasp.ecn.ulaval.ca/ (2007)
  2. 2.
    Ackland, R., Dowrick, S., Freyens, B.: Measuring global poverty: why PPP methods matter. The Australian Demographic and Social Research Initiative Unpublished Manuscript, Australian National University, Canberra (2008)Google Scholar
  3. 3.
    Andrews, D.F., Bickel, P.J., Hampel, F.R., Huber, P.J, Rogers, W.H., Tukey, J.W.: Robust Estimates of Location: Survey and Advances. Princeton University Press, Princeton (1972)Google Scholar
  4. 4.
    Bandourian, R., McDonald, J.B., Turley, R.S.: A comparison of parametric models of income distribution across countries and over time. Rev. Estad. 55, 164–165 (2003)Google Scholar
  5. 5.
    Bourguignon, F., Morrisson, C.: Inequality among world citizens: 1820–1992. Am. Econ. Rev. 92(4), 727–744 (2002)CrossRefGoogle Scholar
  6. 6.
    Chen, S., Ravallion, M.: The developing world is poorer than we thought, but no less successful in the fight against poverty. Q. J. Econ. 125(4), 1577–1625 (2010)CrossRefGoogle Scholar
  7. 7.
    Chen, S., Datt, G., Ravallion, M.: POVCAL, A Program for Calculating Poverty Measures for Grouped Data. World Bank Poverty and Human Resource Division, The World Bank Group, Washington (2001)Google Scholar
  8. 8.
    Chotikapanich, D., Griffiths, W.E., Rao, D.S.P.: Estimating and combining national income distributions using limited data. J. Bus. Econ. Stat. 25, 97–109 (2007)CrossRefGoogle Scholar
  9. 9.
    Datt, G.: Computational tools for poverty measurement and analysis. IFPRI Food Consumption and Nutrition Division Discussion Paper No. 50, International Food Policy Research Institute, Washington (1998)Google Scholar
  10. 10.
    Deheuvels, P.: Estimation nonparamétrique de la densité par histogrammes généralisés. Rev. Statist. Appl. 25, 5–42 (1977)Google Scholar
  11. 11.
    Diaz-Emparanza, I.: Selecting the number of replications in a simulation study. Unpublished Manuscript, University of the Basque Country Department of Economics and Statistics. Available online at http://129.3.20.41/eps/em/papers/9612/9612006.pdf (1996)
  12. 12.
    Diaz-Emparanza, I.: Is a small Monte Carlo analysis a good analysis? Checking the size, power, and consistency of a simulation-based test. Stat. Pap. 43(4), 567–577 (2002)CrossRefGoogle Scholar
  13. 13.
    Domma, F., Perri, P.: Some developments on the log-dagum distribution. Stat. Methods Appl. 18(2), 205–220 (2009)CrossRefGoogle Scholar
  14. 14.
    Fuentes, R.: Poverty, pro-poor growth and simulated inequality reduction. UNDP Human Development Report Office Occasional Paper No. 11, United Nations Development Programme, New York (2005)Google Scholar
  15. 15.
    Heston, A., Summers, R., Aten, B.: Penn world table version 6.3, center for international comparisons of production, income, and prices at the University of Pennsylvania. Available online at http://pwt.econ.upenn.edu/php_site/pwt_index.php (2009)
  16. 16.
    Jann, B.: Univariate kernel density estimation. Statistical Software Component No. S456410, Department of Economics, Boston College, Boston (2007)Google Scholar
  17. 17.
    Jones, M.C., Marron, J.S., Sheather, J.S.: A brief survey of bandwidth selection for density estimation. J. Am. Stat. Assoc. 91, 401–407 (1996)CrossRefGoogle Scholar
  18. 18.
    Kakwani, N.C.: On a class of poverty measures. Econometrica 48(2), 437–446 (1980)CrossRefGoogle Scholar
  19. 19.
    Kakwani, N.C.: Functional forms for estimating the lorenz curve: a reply. Econometrica 44(1), 1063–1064 (1980)CrossRefGoogle Scholar
  20. 20.
    Kleiber, C.: A guide to the dagum distributions. In: Chotikapanich, D. (ed.) Modeling Income Distributions and Lorenz Curves, Economic Studies in Inequality, Social Exclusion, and Well-Being. Springer New York (2008)Google Scholar
  21. 21.
    Li, Q., Racine, J.S.: Nonparametric Econometrics: Theory and Practice. Princeton University Press (2006)Google Scholar
  22. 22.
    Lopez, J.H., Serven, L.: A normal relationship? Poverty, growth and inequality. World Bank Policy Research Working Paper No. 3814, The World Bank, Washington (2006)Google Scholar
  23. 23.
    Marron, J.S., Nolan, D.: Canonical kernels for density estimation. Stat. Probab. Lett. 7, 195–199 (1988)CrossRefGoogle Scholar
  24. 24.
    Marron, J.S., Ruppert, D.: Transformations to reduce boundary bias in kernel density estimation. J. R. Stat. Soc., Ser. B (Methodological) 56(4), 653–671 (1994)Google Scholar
  25. 25.
    McDonald, J.B.: Some generalized functions for the size distribution of income. Econometrica 52, 647–663 (1984)CrossRefGoogle Scholar
  26. 26.
    Milanovic, B.: Global inequality recalculated: the effect of new 2005 PPP estimates on global inequality. J. Econ. Inequal. (forthcoming)Google Scholar
  27. 27.
    Milanovic, B.: True world income distribution, 1988 and 1993: first calculation based on household surveys alone. Econ. J. 112, 51–92 (2002)CrossRefGoogle Scholar
  28. 28.
    Milanovic, B.: Worlds Apart: Measuring International and Global Inequality. Princeton University Press (2005)Google Scholar
  29. 29.
    Minoiu, C., Reddy, S.: Kernel density estimation from grouped data: the case of poverty assessment. IMF Working Paper No. 183, International Monetary Fund, Washington (2008)Google Scholar
  30. 30.
    Minoiu, C., Reddy S.: Estimating poverty and inequality from grouped data: how well do parametric methods perform? J. Income Distrib. 18(2), 160–179 (2009)Google Scholar
  31. 31.
    Mosteller, F.: On some useful inefficient statistics. Ann. Math. Stat. 17(4), 377–408 (1946)CrossRefGoogle Scholar
  32. 32.
    Ott, R.L., Longnecker, M.: An Introduction to Statistical Methods and Data Analysis, 6th Edition. Duxbury Press (2008)Google Scholar
  33. 33.
    Pinkovskiy, M., Sala-i-Martin, X.: Parametric distributions of the world distribution of income. NBER Working Paper No. 15433, The National Bureau for Economic Research, Cambridge (2009)Google Scholar
  34. 34.
    Reddy, S., Pogge, T.: How not to count the poor. In: Anand, S., Segal P., Stiglitz, J. (eds.) Debates on the Measurement of Global Poverty, Oxford University Press (2010)Google Scholar
  35. 35.
    Sala-i-Martin, X.: The world distribution of income: falling poverty and ... convergence, period. Q. J. Econ. 121(2), 351–397 (2006)CrossRefGoogle Scholar
  36. 36.
    Sheather, S.J., Jones, M.C.: A reliable data-based bandwidth selection method for kernel density estimation. J. R. Stat. Soc. Ser. B (Methodological), 53(3), 683–690 (1991)Google Scholar
  37. 37.
    Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability, vol. 26, Chapman & Hall/CRC (1986)Google Scholar
  38. 38.
    Stigler, S.M.: Linear functions of order statistics with smooth weight functions. Ann. Stat. 2(4), 676–693 (1974)CrossRefGoogle Scholar
  39. 39.
    Villasenor, J.A., Arnold, B.C.: Elliptical lorenz curves. J. Econom. 40, 327–338 (1989)CrossRefGoogle Scholar
  40. 40.
    Wand, M.P., Jones, M.C.: Kernel Smoothing. Chapman and Hall, London (1995)CrossRefGoogle Scholar
  41. 41.
    World Bank: Povcalnet online database. The World Bank Group, Washington. Available online at http://go.worldbank.org/7X6J3S7K90 (2010)
  42. 42.
    Wu, X., Perloff J.: GMM estimation of a maximum entropy distribution with interval data. J. Econom. 138(2), 532–546 (2007)CrossRefGoogle Scholar
  43. 43.
    Yatchew, A.: Nonparametric regression techniques in economics. J. Econ. Lit. 36(2), 669–721 (1998)Google Scholar
  44. 44.
    Zhang, Y., Wan, G.: Globalization and the urban poor in China. UNU-WIDER Working Paper No. 2006/42, United Nations University, World Institute for Development Economics Research, Helsinki (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  1. 1.International Monetary Fund, IMF InstituteWashingtonUSA
  2. 2.Department of EconomicsThe New School for Social ResearchNew YorkUSA

Personalised recommendations