The Journal of Economic Inequality

, Volume 11, Issue 2, pp 133–162 | Cite as

A class of distribution and association sensitive multidimensional welfare indices

  • Suman SethEmail author


This paper axiomatically characterizes a class of two-parameter generalized mean social welfare indices having two or more dimensions of well-being. These indices, under appropriate parametric restrictions, are sensitive to two distinct forms of inter-personal inequality. The first form of inequality is concerned with the dispersion of each dimensional achievement across the population. The second is concerned with the association or correlation across dimensions, reflecting the observation that the correlation of individual components of well-being across dimensions is relevant for social welfare evaluation. It is shown that many existing multidimensional welfare indices are closely related to this new class. Statistical tests are developed to verify the significance of the evaluations generated by these indices. Finally, the class of indices is applied to Indonesian data to analyze the impact on financial crisis on the country’s social welfare using two waves of Indonesian Family Life Surveys (IFLS).


Social welfare measurement Multidimensional inequality Multidimensional association Equally distributed equivalent Generalized mean 

JEL Classification

O12 D63 I31 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alkire, S., Foster, J.E.: Counting and multidimensional poverty measurement. Working Paper 7, Oxford Poverty & Human Development Initiative, University of Oxford (2008)Google Scholar
  2. 2.
    Alkire, S., Foster, J.E.: Designing the inequality-adjusted human development index (HDI). Working Paper No. 37, Oxford Poverty & Human Development Initiative (2010)Google Scholar
  3. 3.
    Alkire, S., Sarwar, M.B.: Multidimensional measures of poverty & well-being. Working Paper, Oxford Poverty & Human Development Initiative, University of Oxford (2009)Google Scholar
  4. 4.
    Atkinson, A.B.: On the measurement of inequality. J. Econ. Theory 2, 244–263 (1970)CrossRefGoogle Scholar
  5. 5.
    Atkinson, A.B.: Multidimensional deprivation: contrasting social welfare and counting approaches. J. Econ. Inequal. 1, 51–65 (2003)CrossRefGoogle Scholar
  6. 6.
    Atkinson, A.B., Bourguignon, F.: The comparison of multi-dimensioned distributions of economic status. Rev. Econ. Stud. 49, 183–201 (1982)CrossRefGoogle Scholar
  7. 7.
    Ben Porath, E., Gilboa, I., Schmeidler, D.: On the measurement of inequality under uncertainty. J. Econ. Theory 75, 194–204 (1997)CrossRefGoogle Scholar
  8. 8.
    Bickel, P.J., Freedman, D.A.: Asymptotic normality and the bootstrap in stratified sampling. Ann. Stat. 12, 470–482 (1984)CrossRefGoogle Scholar
  9. 9.
    Bierens, H.J.: Introduction to the Mathematical and Statistical Foundations of Econometrics. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  10. 10.
    Blackorby, C., Primont, D., Russell, R.R.: Duality, Separability, and Functional Structure: Theory and Economic Applications. North-Holland, New York (1978)Google Scholar
  11. 11.
    Boland, P.J., Proschan, F.: Multivariate arrangement increasing functions with applications in probability and statistics. J. Multivar. Anal. 25, 286–298 (1988)CrossRefGoogle Scholar
  12. 12.
    Bourguignon, F.: Comment on ‘multidimensioned approaches to welfare analysis’ by E. Maasoumi. In: Silber, J. (ed.), Handbook of Income Inequality Measurement, pp. 477–484. Kluwer, Boston (1999)Google Scholar
  13. 13.
    Bourguignon, F., Chakravarty, S.R.: The measurement of multidimensional poverty. J. Econ. Inequal. 1, 25–49 (2003)CrossRefGoogle Scholar
  14. 14.
    Chakravarty, S.R.: Inequality, Polarization, and Poverty. Springer, New York (2009)CrossRefGoogle Scholar
  15. 15.
    Chiappero, M.E.: A multidimensional assessment of well-being based on sen’s functioning theory. Riv. Int. Sci. Soc. 108(2), 207–239 (2000)Google Scholar
  16. 16.
    CONEVAL: Methodology for multidimensional poverty measurement in mexico. Consejo Nacional de Evaluación de la Política de Desarrollo Social (2010)Google Scholar
  17. 17.
    Decancq, K.: Copula-based measurement of dependence between dimensions of well-being. Center for Economic Studies, Katholieke Universiteit Leuven (2009)Google Scholar
  18. 18.
    Decancq, K., Lugo, M.A.: Setting weights in multidimensional indices of well-being. Working Paper 18, Oxford Poverty & Human Development Initiative, University of Oxford (2008)Google Scholar
  19. 19.
    Decancq, K., Lugo, M.A.: Measuring inequality of well-being with a correlation-sensitive multidimensional Gini index. ECINEQ Working Paper 2009-124 (2009)Google Scholar
  20. 20.
    Decancq, K., Ooghe, E.: Has the world moved forward? A robust multidimensional evaluation. Center for Economic Studies, Katholieke Universiteit Leuven (2009)Google Scholar
  21. 21.
    Decancq, K., Decoster, A., Schokkaert, E.: The evolution of world inequality in well-being. World Dev. 37, 11–25 (2009)CrossRefGoogle Scholar
  22. 22.
    Duclos, J.-Y., Araar, A.: Poverty and Equity: Measurement, Policy and Estimation with DAD. Springer, New York (2006)Google Scholar
  23. 23.
    Dutta, I., Pattanaik, P.K., Xu, Y.: On measuring deprivation and the standard of living in a multidimensional framework on the basis of aggregate data. Economica 70, 197–221 (2003)CrossRefGoogle Scholar
  24. 24.
    Eichhorn, W.: Functional Equations in Economics. Addison-Wesley, Reading (1978)Google Scholar
  25. 25.
    Eremin, E.V.: A central limit theorem for linear estimators of measurement results. Meas. Tech. 42, 1009–1015 (1999)CrossRefGoogle Scholar
  26. 26.
    Foster, J.E., Sen, A.: On Economic Inequality. Oxford University Press, Oxford (1997)Google Scholar
  27. 27.
    Foster, J.E., Shneyerov, A.A.: A general class of additively decomposable inequality measures. Econ. Theory 14, 89–111 (1999)CrossRefGoogle Scholar
  28. 28.
    Foster, J.E., Székely, M.: Is economic growth good for the poor? Tracking low incomes using general means. Int. Econ. Rev. 49, 1143–1172 (2008)CrossRefGoogle Scholar
  29. 29.
    Foster, J.E., López-Calva, L.F., Székely, M.: Measuring the distribution of human development: methodology and an application to Mexico. J. Hum. Dev. 6, 5–29 (2005)CrossRefGoogle Scholar
  30. 30.
    Gajdos, T., Weymark, J.A.: Multidimensional generalized Gini indices. Econ. Theory 26, 471–496 (2005)CrossRefGoogle Scholar
  31. 31.
    Grimm, M., Harttgen, K., Klasen, S., Misselhorn, M.: A human development index by income groups. World Dev. 36, 2527–2546 (2008)CrossRefGoogle Scholar
  32. 32.
    Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1934)Google Scholar
  33. 33.
    Hicks, D.A.: The inequality adjusted human development index: a constructive proposal. World Dev. 25, 1283–1298 (1997)CrossRefGoogle Scholar
  34. 34.
    Joe, H.: Multivariate Models and Dependence Concepts. Chapman and Hall, London (1997)CrossRefGoogle Scholar
  35. 35.
    Kockläuner, G.:. A multidimensional poverty index. In: Waldmann, K.-H., Stocker, U.M. (eds.), Operations Research Proceedings 2006, pp. 223–225. Springer, Berlin (2006)Google Scholar
  36. 36.
    Kockläuner, G.: On generalized means of censored income gap ratios. Unpublished manuscript, Fachbereiche Wirtschaft, Fachhochschule Kiel (2008)Google Scholar
  37. 37.
    Kolm, S.-C.: Multidimensional equalitarianisms. Q. J. Econ. 91, 1–13 (1977)CrossRefGoogle Scholar
  38. 38.
    Lasso de la Vega, M.C., Urrutia, A.: Characterizing how to aggregate the individuals’ deprivations in a multidimensional framework. J. Econ. Integr. (2010). doi: 10.1007/s10888-010-9139-y Google Scholar
  39. 39.
    Marshall, A.W., Olkin, I.: Inequalities: Theory of Majorization and its Applications. Academic, New York (1979)Google Scholar
  40. 40.
    Milgrom, P., Roberts, J.: Rationalizability, learning, and equilibrium in games with strategic complementarities. Econometrica 58, 1255–1277 (1990)CrossRefGoogle Scholar
  41. 41.
    Morris, M.D.: Measuring the Condition of the World’s Poor: the Physical Quality of Life Index. Pergamon, New York (1979)Google Scholar
  42. 42.
    Pattanaik, P.K., Reddy, S.G., Xu, Y.: On procedures for measuring deprivation and living standards of societies in a multi-attribute framework. Working Paper 08-02, Andrew Young School of Policy Studies, Georgia State University (2007)Google Scholar
  43. 43.
    Seth, S.: Inequality, interactions, and human development. J. Hum. Dev. 10, 375–396 (2009)CrossRefGoogle Scholar
  44. 44.
    Stiglitz, J.E., Sen, A., Fitoussi, J.-P.: Report by the commission on the measurement of economic performance and social progress. (2009)
  45. 45.
    Strauss, J., Beegle, K., Dwiyanto, A., Herawati, Y., Pattinasarany, D., Satriawan, E., Sukamdi, B.S., Witoelar, F.: Indonesian Living Standards Before and After the Financial Crisis: Evidence from the Indonesia Family Life Survey. The Rand Corporation, Santa Monica (2004)Google Scholar
  46. 46.
    Topkis, D.: Supermodularity and Complementarity. Princeton University Press, Princeton (1998)Google Scholar
  47. 47.
    Tsui, K.-Y.: Multidimensional generalizations of the relative and absolute inequality indices: the Atkinson–Kolm–Sen approach. J. Econ. Theory 67, 251–265 (1995)CrossRefGoogle Scholar
  48. 48.
    Tsui, K.-Y.: Multidimensional inequality and multidimensional generalized entropy measures: an axiomatic derivation. Soc. Choice Welf. 16, 145–157 (1999)CrossRefGoogle Scholar
  49. 49.
    Tsui, K.-Y.: Multidimensional poverty indices. Soc. Choice Welf. 19, 69–93 (2002)CrossRefGoogle Scholar
  50. 50.
    United Nations Development Programme: Human Development Report. Oxford University Press, New York (2006)Google Scholar
  51. 51.
    United Nations Development Programme: Human Development Report. Oxford University Press, New York (2010)Google Scholar
  52. 52.
    Weymark, J.A.: The normative approach to the measurement of multidimensional inequality. In: Farina, F., Savaglio, E. (eds.), Inequality and Economic Integration, pp. 303–328. Routledge, London (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Oxford Poverty and Human Development Initiative (OPHI), Department of International DevelopmentUniversity of OxfordOxfordUK

Personalised recommendations