The Journal of Economic Inequality

, Volume 10, Issue 2, pp 191–217 | Cite as

Measuring the effect of spell recurrence on poverty dynamics—evidence from Spain

Article

Abstract

Accounting for the time individuals spend below the poverty line is an important dimension in order to design social policies to fight against poverty. The literature is currently aiming to construct a consistent aggregate measure of poverty over time that takes into account individual income lifetime profiles. It is however, far from clear which aspects of the specific patterns of poverty spells should be included. Using longitudinal data for Spain, this paper shows that the effect of spell recurrence on poverty dynamics is relevant. Poverty exit and re-entry rates vary not only with personal or household characteristics but also with spell accumulation and the duration of current and past spells. In general, our main findings support that an aggregate intertemporal poverty index should incorporate full individual poverty lifetime trajectories accounting for both poverty and non-poverty spell durations.

Keywords

Poverty dynamics Multiple spells Recurrence 

JEL Classification

C41 D31 I32 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aassve, A., Burgess, S., Propper, C., Dickson, M.: Modelling Poverty by not Modelling Poverty: A Simultaneous Hazard Approach to the UK. ISER Working Paper 2005-26 (2005)Google Scholar
  2. 2.
    Allison, P.D.: Discrete-time methods for the analysis of event histories. In: Leinhardt, S. (ed.) Sociological Methodology, pp. 61–97. Jossey-Bass Publishers, San Francisco (1982)Google Scholar
  3. 3.
    Arranz, J.M., Muro, J.: Recurrent unemployment, welfare benefits and heterogeneity. Int. Rev. Appl. Econ. 18(3), 423–441 (2004)CrossRefGoogle Scholar
  4. 4.
    Bane, M.J., Ellwood, D.T.: Slipping into and out of poverty: the dynamics of spells. J. Hum. Resour. 21(1), 1–23 (1986)CrossRefGoogle Scholar
  5. 5.
    Biewen, M.: Who are the chronic poor? An econometric analysis of chronic poverty in Germany. Res. Econ. Inequal. 13, 31–62 (2006)CrossRefGoogle Scholar
  6. 6.
    Bigsten, A., Shimeles, A.: Poverty transition and persistence in Ethiopia: 1994–2004. World Dev. 36(9), 1559–1584 (2008)CrossRefGoogle Scholar
  7. 7.
    Bonnal, L., Fougere, D., Serandon, A.: Evaluating the impact of French employment policies on individual labour market histories. Rev. Econ. Stud. 64, 683–713 (1997)CrossRefGoogle Scholar
  8. 8.
    Bossert, W., Chakravarty, S., D’Ambrosio, C.: Poverty and Time. UNU-WIDER, Working Paper No. 2010/74 (2010)Google Scholar
  9. 9.
    Cantó, O., Gradín, C., Del Río, C.: La pobreza crónica, transitoria y recurrente en España, Documento de traballo, Departamento de Economía Aplicada, Universidade de Vigo, dt1003 (2010)Google Scholar
  10. 10.
    Cappellari, L., Jenkins, S.P.: Modelling low income transitions. J. Appl. Econ. 19(4), 593–610 (2004)CrossRefGoogle Scholar
  11. 11.
    Debels, A., Vandecasteele, L.: The time lag in annual household-based income measures: assessing and correcting the bias. Rev. Income Wealth 54(1), 71–89 (2008)CrossRefGoogle Scholar
  12. 12.
    Devicienti, F.: Poverty persistence in Britain: a multivariate analysis using the BHPS, 1991–1997. J. Economics 9, 1–34 (2001)Google Scholar
  13. 13.
    Devicienti, F., Gualtieri, V.: The Dynamics and Persistence of Poverty: Evidence from Italy. Laboratorio R. Revelli, Working Paper Series, no. 62–2007, Torino (2007)Google Scholar
  14. 14.
    Gardiner, K., Hills, J.: Policy implications of new data on income mobility. Econ. J. 109, F91–F111 (1999)CrossRefGoogle Scholar
  15. 15.
    Gradín, C., Del Río, C., Cantó, O.: Measuring poverty accounting for time. Rev. Income Wealth (2011). doi:10.1111/j.1475-4991.2011.00458.x Google Scholar
  16. 16.
    Hansen, J., Wahlberg, R.: Poverty Persistence in Sweden. IZA Discussion Paper: 1209 (2004)Google Scholar
  17. 17.
    Heckman, J.: The incidental parameters problem and the problem of initial conditions in estimating a discrete time-discrete data stochastic process. In: Manski, C., Mc Fadden, D. (eds.) Structural Analysis of Discrete Data with Econometric Applications, pp. 179–195. The MIT Press, Cambridge (1981)Google Scholar
  18. 18.
    Heckman, J., Borjas, G.I.: Does unemployment cause future unemployment? Definitions, questions and answers for a continuous time model of heterogeneity and state dependence. Economica 47, 247–283 (1980)CrossRefGoogle Scholar
  19. 19.
    Heckman, J., Singer, B.: Econometric duration analysis. J. Econ. 24, 63–132 (1984)Google Scholar
  20. 20.
    Heckman, J.J., Walker, J.: The relationship between wages and income and the timing and spacing of births: evidence from Swedish longitudinal data. Econometrica 58, 1411–1442 (1990)CrossRefGoogle Scholar
  21. 21.
    Heckman, J., Hotz, V.J., Walker, J.: New evidence on the timing and spacing of births. Am. Econ. Rev. 75, 179–184 (1985)Google Scholar
  22. 22.
    Hoy, M., Thompson, B.S., Zheng, B.: Empirical Issues in Lifetime Poverty Measurement. UNU-WIDER, Working Paper No. 2010/73 (2010)Google Scholar
  23. 23.
    Iceland, J.: The Dynamics of Poverty Spells and Issues of Left-Censoring, pp. 97–378. PSC Report Series, University of Michigan (1997)Google Scholar
  24. 24.
    Jain, D., Vilcassim, N.J.: Investigating household purchase timing decisions: a conditional hazard function approach. Mark. Sci. 10, 1–23 (1991)CrossRefGoogle Scholar
  25. 25.
    Jenkins, S.P.: Easy estimation methods for discrete-time duration models. Oxf. Bull. Econ. Stat. 57, 129–137 (1995)CrossRefGoogle Scholar
  26. 26.
    Kalbfleisch, J.D., Prentice, R.L.: The Statistical Analysis of Failure Time Data. Wiley, New York (1980)Google Scholar
  27. 27.
    Lillard, L.A., Willis, R.J.: Dynamic aspects of earnings mobility. Econometrica 46, 985–1012 (1978)CrossRefGoogle Scholar
  28. 28.
    OECD: Employment Outlook, June, chapter 2: When Money is Tight: Poverty Dynamics in OECD countries, Paris (2001)Google Scholar
  29. 29.
    OECD: Growing Unequal?, chapter 6, pp. 155–175, Paris (2008)Google Scholar
  30. 30.
    Omori, Y.: Stigma effects of non-employment. Econ. Inq. XXXV, 394–416 (1997)CrossRefGoogle Scholar
  31. 31.
    Peña-Casas, R., Latta, M.: Working Poor in the European Union. European Foundation for the Improvement of Living and Working Conditions, European Union (2004)Google Scholar
  32. 32.
    Roed, K., Oddbjorn, R., Goldstein, H.: Does unemployment cause unemployment? Micro-evidence from Norway. Appl. Econ. 31, 1207–1218 (1999)CrossRefGoogle Scholar
  33. 33.
    Stevens, A.H.: Climbing out of poverty, falling back in. (Measuring the persistence of poverty over multiple spells). J. Hum. Resour. 34, 557–588 (1999)CrossRefGoogle Scholar
  34. 34.
    Stewart, M.B.: The interrelated dynamics of unemployment and low-wage employment. J. Appl. Econ. 22, 511–531 (2007)CrossRefGoogle Scholar
  35. 35.
    Valletta, R.G.: The ins and outs of poverty in advanced economies: government policy and poverty dynamics in Canada, Germany, Great Britain and the United States. Rev. Income Wealth 52(1), 261–284 (2006)CrossRefGoogle Scholar
  36. 36.
    Vilcassim, N.J., Jain, D.: Modelling purchase timing and brand switching behavior incorporating explanatory variables and unobserved heterogeneity. J. Mark. Res. 28, 29–41 (1991)CrossRefGoogle Scholar
  37. 37.
    Wooldridge, J.M.: Simple solutions to the initial conditions problem for dynamic, nonlinear panel data models with unobserved heterogeneity. J. Appl. Econ. 20, 39–54 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Dept. Estadística, Estructura Económica y OEIUniversidad de AlcaláAlcalá de HenaresSpain
  2. 2.Instituto de Estudios Fiscales and Universidade de VigoMadridSpain

Personalised recommendations