The Journal of Economic Inequality

, Volume 9, Issue 4, pp 529–554 | Cite as

Income inequality games

Article

Abstract

The paper explores different applications of the Shapley value for either inequality or poverty measures. We first investigate the problem of source decomposition of inequality measures, the so-called additive income sources inequality games, based on the Shapley value, introduced by Chantreuil and Trannoy (1999) and Shorrocks (1999). We show that multiplicative inequality games provide dual results compared with Chantreuil and Trannoy’s ones. We also investigate the case of multiplicative poverty games for which indices are non additively decomposable in order to capture contributions of sub-indices, which are multiplicatively connected with, as in the Sen-Shorrocks-Thon poverty index. We finally show, in the case of additive poverty indices, that the Shapley value may be equivalent to traditional methods of decomposition such as subgroup consistency and additive decomposition.

Keywords

Inequality Poverty Shapley Source decomposition Subgroup decomposition 

JEL Clasification

D31 D63 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auvray, C., Trannoy, A.: Décomposition par source de l’inégalité des revenus à l’aide de la Valeur Shapley. In: Journées de Microéconomie Appliquées. Sfax, Tunisie (1992)Google Scholar
  2. 2.
    Bhattacharya, N., Mahalanobis, B.: Regional disparities in household consumption in India. J. Am. Stat. Assoc. 62, 143–161 (1967)CrossRefGoogle Scholar
  3. 3.
    Bourguignon, F.: Decomposable inequality measures. Econometrica 47, 901–920 (1979)CrossRefGoogle Scholar
  4. 4.
    Chantreuil, F., Trannoy, A.: Inequality Decomposition Values: The Trade-off Between Marginality and Consistency. Working Paper # 9924, THEMA, Université de Cergy-Pontoise (1999)Google Scholar
  5. 5.
    Cheng, Y., Li, S.: Income inequality and efficiency: a decomposition approach and applications to China. Econ. Lett. 91(1), 8–14 (2006)CrossRefGoogle Scholar
  6. 6.
    Cowell, F.A.: On the structure of additive inequality measures. Rev. Econ. Stud. 47, 521–531 (1980)CrossRefGoogle Scholar
  7. 7.
    Devicienti, F.: Shapley-value decompositions of changes in wage distributions: a note. J. Econ. Inequal. 8(1), 35–45 (2008)CrossRefGoogle Scholar
  8. 8.
    Duclos, J.-Y., Makdissi, P., Wodon, Q.: Poverty-reducing tax reforms with heterogeneous agents. J. Public Econ. Theory 7(1), 107–116 (2005)CrossRefGoogle Scholar
  9. 9.
    Ebert, U.: The decomposition of inequality reconsidered: weakly decomposable measures. Math. Soc. Sci. 60(2), 94–103 (2010)CrossRefGoogle Scholar
  10. 10.
    Ebert, U., Moyes, P.: An axiomatic characterization of Yitzhaki’s index of individual deprivation. Econ. Lett. 68, 263–270 (2000)CrossRefGoogle Scholar
  11. 11.
    Foster, J.E., Shorrocks, A.F.: Subgroup consistent poverty indices. Econometrica 59, 687–709 (1991)CrossRefGoogle Scholar
  12. 12.
    Foster, J.E., Greer, J., Thorbecke, E.: Notes and comments. A class of decomposable poverty measures. Econometrica 52, 761–766 (1984)CrossRefGoogle Scholar
  13. 13.
    Gini, C.: Variabilità e mutabilità. In: Memori di Metodologia Statistica I, Variabilità e Concentrazione, pp. 211–382. Libreria Eredi Virgilio Veschi, Rome (1912)Google Scholar
  14. 14.
    Hart, S., Mas-Colell, A.: Potential value and consistency. Econometrica 57, 589–614 (1987)CrossRefGoogle Scholar
  15. 16.
    Israeli, O.: A Shapley-based decomposition of the R-squared of a linear regression. J. Econ. Inequal. 50(2), 199–212 (2007)CrossRefGoogle Scholar
  16. 16.
    Lasso de la Vega, C., Urrutia, M.: The extended Atkinson family: the class of multiplicative decomposable inequality measures, and some new graphical procedures for analysts. J. Econ. Inequal. 6(2), 211–225 (2008)CrossRefGoogle Scholar
  17. 17.
    Lerman, R., Yitzhaki, S.: Income inequalities effects by income source: a new approach and applications to United States. Rev. Econ. Stat. 67, 151–156 (1985)CrossRefGoogle Scholar
  18. 18.
    Morduch, J., Sicular, T.: Rethinking inequality decomposition, with evidence from rural China. Econ. J. 112(476), 93–106 (2002)CrossRefGoogle Scholar
  19. 19.
    Rao, V.M.: Two decompositions of concentration ratio. J. R. Stat. Soc., Ser. A 132, 418–425 (1969)CrossRefGoogle Scholar
  20. 20.
    Sastre, M., Trannoy, A.: Shapley inequality decomposition by factor components: some methodological issues. In: Moyes, P., Seidl, C., Shorrocks, A.F. (eds.) Inequalities: Theory, Experiments and Applications. Journal of Economics, vol. 9, pp. 51–90 (2002)Google Scholar
  21. 21.
    Shapley, L.: A value for n-person games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games, vol. 2. Princeton University Press (1953)Google Scholar
  22. 22.
    Shorrocks, A.F.: The class of additively decomposable inequality measures. Econometrica 48, 613–625 (1980)CrossRefGoogle Scholar
  23. 23.
    Shorrocks, A.F.: Inequality decomposition by factor component. Econometrica 50, 193–211 (1982)CrossRefGoogle Scholar
  24. 24.
    Shorrocks, A.F.: The impact of income component on the distribution of family incomes. Q. J. Econ. 98, 311–326 (1983)CrossRefGoogle Scholar
  25. 25.
    Shorrocks, A.F.: Inequality decomposition by population subgroups. Econometrica 52, 1369–1386 (1984)CrossRefGoogle Scholar
  26. 26.
    Shorrocks, A.F.: Aggregation Issues in Inequality Measurement. Mimeo, Fourth Karlsruhe Symposium on Measurement in Economics (1987)Google Scholar
  27. 27.
    Shorrocks, A.F.: Revisiting the Sen poverty index. Econometrica 63, 1225–1230 (1995)CrossRefGoogle Scholar
  28. 28.
    Shorrocks, A.F.: Decomposition Procedures for Distributional Analysis: A Unified Framework based on the Shapley Value. Mimeo, University of Essex (1999)Google Scholar
  29. 29.
    Sen, A.: Poverty: an ordinal approach to measurement. Econometrica 44, 219–231 (1976)CrossRefGoogle Scholar
  30. 30.
    Thon, D.: On measuring poverty. Rev. Income Wealth 25, 429–440 (1979)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Crem, Département des Sciences ÉconomiquesUniversité Rennes IRennesFrance
  2. 2.Ecole PolytechniqueParisFrance
  3. 3.LametaUniversité Montpellier IMontpellier Cedex 2France
  4. 4.GrédiUniversité de SherbrookeSherbrookeCanada

Personalised recommendations