Advertisement

The Journal of Economic Inequality

, Volume 5, Issue 1, pp 21–37 | Cite as

Robust stochastic dominance: A semi-parametric approach

  • Frank A. Cowell
  • Maria-Pia Victoria-FeserEmail author
Article

Abstract

Lorenz curves and second-order dominance criteria, the fundamental tools for stochastic dominance, are known to be sensitive to data contamination in the tails of the distribution. We propose two ways of dealing with the problem: (1) Estimate Lorenz curves using parametric models and (2) combine empirical estimation with a parametric (robust) estimation of the upper tail of the distribution using the Pareto model. Approach (2) is preferred because of its flexibility. Using simulations we show the dramatic effect of a few contaminated data on the Lorenz ranking and the performance of the robust semi-parametric approach (2). Since estimation is only a first step for statistical inference and since semi-parametric models are not straightforward to handle, we also derive asymptotic covariance matrices for our semi-parametric estimators.

Key words

Lorenz curve M-estimators Pareto model welfare dominance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atkinson, A.B.: Income tax and top incomes over the twentieth century. Hacienda Pública Esp. 168, 123–141 (2004)Google Scholar
  2. 2.
    Beach, C.M., Davidson, R.: Distribution-free statistical inference with Lorenz curves and income shares. Rev. Econ. Stud. 50, 723–735 (1983)CrossRefGoogle Scholar
  3. 3.
    Bishop, J.A., Chakraborti, S., Thistle, P.D.: Large sample tests for absolute Lorenz dominance. Econ. Lett. 26, 291–294 (1988)CrossRefGoogle Scholar
  4. 4.
    Bishop, J.A., Chakraborti, S., Thistle, P.D.: Asymptotically distribution-free statistical inference for generalized Lorenz curves. Rev. Econ. Stat. 71(11), 725–727 (1989)CrossRefGoogle Scholar
  5. 5.
    Cowell, F.A., Victoria-Feser, M.-P.: Welfare rankings in the presence of contaminated data. Econometrica 70, 1221–1233 (2002)CrossRefGoogle Scholar
  6. 6.
    Cowell, F.A., Victoria-Feser, M.-P.: Distribution-free inference for welfare indices under complete and incomplete information. Journal of Economic Inequality 1, 191–219 (2003)CrossRefGoogle Scholar
  7. 7.
    Cowell, F.A., Victoria-Feser, M.-P.: Distributional dominance with trimmed data. J. Bus. Econ. Stat. (2006). To appearGoogle Scholar
  8. 8.
    Dagum, C.: A new model of personal income distribution: Specification and estimation. Econ. Appl. 30, 413–436 (1977)Google Scholar
  9. 9.
    Davidson, R., Duclos, J.-Y.: Statistical inference for stochastic dominance and for the measurement of poverty and inequality. Econometrica 68, 1435–1464 (2000)CrossRefGoogle Scholar
  10. 10.
    Department of Social Security: Households below average income: A statistical analysis, 1979–1988/9. HMSO, London (1992)Google Scholar
  11. 11.
    Dupuis, D., Victoria-Feser, M.-P.: A robust prediction error criterion for Pareto modeling of upper tails. Cahiers du GERAD G-2005-29, Montreal (2005)Google Scholar
  12. 12.
    Dupuis, D.J., Field, C.A.: Robust estimation of extremes. Can. J. Stat. 26, 199–215 (1998)CrossRefGoogle Scholar
  13. 13.
    Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events. Applications of Mathematics: Stochastic modelling and applied probability. Springer, Berlin Heidelberg New York (1997)Google Scholar
  14. 14.
    Hampel, F.R.: A general qualitative definition of robustness. The Annals of Mathematics and Statistics 42, 1887–1896 (1971)Google Scholar
  15. 15.
    Hampel, F.R.: The influence curve and its role in robust estimation. J. Am. Stat. Assoc. 69, 383–393 (1974)CrossRefGoogle Scholar
  16. 16.
    Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A.: Robust statistics: The approach based on influence functions. Wiley, New York (1986)Google Scholar
  17. 17.
    Huber, P.J.: Robust statistics. Wiley, New York (1981)Google Scholar
  18. 18.
    INeQ: Software for distributional analysis, Distributional Analysis Research Programme, STICERD. London School of Economics, London WC2A 2AE, UK (2001)Google Scholar
  19. 19.
    Kopczuk, W., Saez, E.: Top wealth shares in the United States, 1916–2000: Evidence from estate tax returns. NBER Working Paper 10399, National Bureau for Economic Research, Cambridge, Massachusetts (2004)Google Scholar
  20. 20.
    Lorenz, M.O.: Methods for measuring concentration of wealth. J. Am. Stat. Assoc. 9, 209–219 (1905)CrossRefGoogle Scholar
  21. 21.
    McDonald, J.B., Ransom, M.R.: Functional forms, estimation techniques and the distribution of income. Econometrica 47, 1513–1525 (1979)CrossRefGoogle Scholar
  22. 22.
    Piketty, T.: Les hauts revenus en France au 20eme siécle – Inégalités et redistributions, 1901–1998. Editions Grasset, Paris (2001)Google Scholar
  23. 23.
    Piketty, T., Saez, E.: Income inequality in the United States, 1913–1998. Q. J. Econ. 118, 1–39 (2003)CrossRefGoogle Scholar
  24. 24.
    Staudte, R.G., Sheather, S.J.: Robust estimation and testing. Wiley, New York (1990)Google Scholar
  25. 25.
    Victoria-Feser, M.-P., Ronchetti, E.: Robust methods for personal income distribution models. Can. J. Stat. 22, 247–258 (1994)CrossRefGoogle Scholar
  26. 26.
    Victoria-Feser, M.-P., Ronchetti, E.: Robust estimation for grouped data. J. Am. Stat. Assoc. 92, 333–340 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  1. 1.London School of EconomicsLondonUK
  2. 2.HECUniversité de GeneveGeneve 4Switzerland

Personalised recommendations