Advertisement

Journal of Chemical Ecology

, Volume 45, Issue 11–12, pp 926–933 | Cite as

An Oviposition Stimulant for a Magnoliaceae-Feeding Swallowtail Butterfly, Graphium doson, from its Primary Host Plant, Michelia compressa

  • Tadanobu Nakayama
  • Keiichi HondaEmail author
Article

Abstract

Chemical examination of plant constituents responsible for oviposition by a Magnoliaceae-feeding butterfly, Graphium doson, was conducted using its major host plant, Michelia compressa. A methanol extract prepared from young leaves of the plant elicited a strong oviposition response from females. The methanolic extract was then separated by solvent partition into three fractions: CHCl3, i-BuOH, and aqueous fractions. Active substance(s) resided in both i-BuOH- and water-soluble fractions. Bioassay-guided further fractionation of the water-soluble substances by means of various chromatographic techniques led to the isolation of an oviposition stimulant. The stimulant was identified as d-(+)-pinitol on the basis of 13C NMR spectra and physicochemical properties. d-(+)-Pinitol singly exhibited a moderate oviposition-stimulatory activity at a dose of 150 μg/cm2. This compound was present also in another host plant, Magnolia grandiflora, in a sufficient amount to induce oviposition behavior of G. doson females. Certain cyclitols including d-(+)-pinitol have been reported to be involved in stimulation of oviposition by some Aristolochiaceae- and Rutaceae-feeding papilionid butterflies. A possible pathway of phytochemical-mediated host shifts in the Papilionidae, in which certain cyclitols could enact important mediators, is discussed in relation to the evolution of cyclitol biosynthesis in plants.

Keywords

d-(+)-Pinitol Host shift Papilionidae Aristolochiaceae Magnoliaceae Rutaceae 

Notes

Acknowledgements

We thank late Dr. M. Nakai and K. Gotoh for help with collecting G. doson females and kind supply of larval food plant.

Supplementary material

10886_2019_1115_MOESM1_ESM.pdf (327 kb)
ESM 1 (PDF 327 kb)

References

  1. Aubert J, Legal L, Descimon H, Michel F (1999) Molecular phylogeny of swallowtail butterflies of the tribe Papilionini (Papilionidae, Lepidoptera). Mol Phylogenet Evol 12:156–167CrossRefGoogle Scholar
  2. Carter M, Feeny P, Haribal M (1999) An oviposition stimulant for spicebush swallowtail butterfly, Papilio Troilus, from leaves of Sassafras albidum. J Chem Ecol 25:1233–1245CrossRefGoogle Scholar
  3. Dittrich P, Korak A (1984) Novel biosynthesis of D-pinitol in Simmondsia chinensis. Phytochemistry 23:65–66CrossRefGoogle Scholar
  4. Dreyer DL, Binder RG, Chan BG, Waiss AC Jr, Hartwig EE, Beland GL (1979) Pinitol, a larval growth inhibitor for Heliothis zea in soybeans. Experientia 35:1182–1183CrossRefGoogle Scholar
  5. Fordyce JA (2010) Host shifts and evolutionary radiations of butterflies. Proc R Soc B 277:3735–3743CrossRefGoogle Scholar
  6. Gardner WA, Phillipa DV, Smith AE (1984) Effect of pinitol on the growth of Heliothis zea and Trichoplusia ni larvae. J Agric Entomol 1:101–105Google Scholar
  7. Haribal M, Feeny P (1998) Oviposition stimulants for the zebra swallowtail butterfly, Eurytides marcellus, from the foliage of pawpaw, Asimina triloba. Chemoecology 8:99–110CrossRefGoogle Scholar
  8. Hoffmann-Ostenhof O, Pittner F (1982) The biosynthesis of myo-inositol and its isomers. Can J Chem 60:1863–1871CrossRefGoogle Scholar
  9. Honda K (1995) Chemical basis of differential oviposition by lepidopterous insects. Arch Insect Biochem Physiol 30:1–23CrossRefGoogle Scholar
  10. Honda K, Hayashi N, Abe F, Yamauchi T (1997) Pyrrolizidine alkaloids mediate host-plant recognition by ovipositing females of an Old World danaid butterfly, Idea leuconoe. J Chem Ecol 23:1703–1713CrossRefGoogle Scholar
  11. Honda K, Ômura H, Chachin M, Kawano S, Inoue AT (2011) Synergistic or antagonistic modulation of oviposition response of two swallowtail butterflies, Papilio maackii and P. protenor, to Phellodendron amurense by its constitutive prenylated flavonoid, phellamurin. J Chem Ecol 37:575–581CrossRefGoogle Scholar
  12. Honda K, Minematsu H, Muta K, Ômura H, Nishii W (2012) d-Pinitol as a key oviposition stimulant for sulfur butterfly, Colias erate: chemical basis for female acceptance of host- and non-host plants. Chemoecology 22:55–63CrossRefGoogle Scholar
  13. Honda K, Hori M, Ômura H, Kainoh Y (2013) Allelochemicals in plant-insect interactions. In: Reedijk J (ed) Elsevier reference module in chemistry, molecular sciences and chemical engineering. Elsevier, Waltham.  https://doi.org/10.1016/B978-0-12-409547-2.02803-1 CrossRefGoogle Scholar
  14. Inoue AT (2006) Morphology of foretarsal ventral surfaces of Japanese Papilio butterflies and relations between these morphology, phylogeny and hostplant preferring hierarchy. Zool Sci 23:169–189CrossRefGoogle Scholar
  15. Li J, Wakui R, Tebayashi S, Kim C-S (2010) Volatile attractants for the common bluebottle, Graphium sarpedon nipponum, from the host, Cinnamomum camphora. Biosci Biotechnol Biochem 74:1987–1990CrossRefGoogle Scholar
  16. Loewus FA, Murthy PPN (2000) myo-inositol metabolism in plants. Plant Sci 150:1–19CrossRefGoogle Scholar
  17. McManus MT, Bieleski RL, Caradus JR, Barker DJ (2000) Pinitol accumulation in mature leaves of white clover in response to a water deficit. Environ Exp Bot 43:11–18CrossRefGoogle Scholar
  18. Miller JS (1987) Host-plant relationships in the Papilionidae (Lepidoptera): parallel cladogenesis or colonization? Cladistics 3:105–120CrossRefGoogle Scholar
  19. Miller JR, Strickler KL (1984) Finding and accepting host plants. In: Willam JB, Cardé RT (eds) Chemical ecology of insects. Chapman and Hall, New York, pp 127–157CrossRefGoogle Scholar
  20. Mukae S, Ohashi T, Matsumoto Y, Ohta S, Ômura H (2016) d-Pinitol in Fabaceae: an Oviposition stimulant for the common grass yellow butterfly, Eurema mandarina. J Chem Ecol 42:1122–1129CrossRefGoogle Scholar
  21. Nakayama T, Honda K, Ômura H, Hayashi N (2003) Oviposition stimulants for the tropical swallowtail butterfly, Papilio polytes, feeding on a rutaceous plant, Toddalia asiatica. J Chem Ecol 29:1621–1634CrossRefGoogle Scholar
  22. Nallu S, Hill JA, Don K, Sahagun C, Zhang W, Meslin C, Snell-Rood E, Clark NL, Morehouse NI, Bergelson J, Wheat CW, Kronforst MR (2018) The molecular genetic basis of herbivory between butterflies and their host plants. Nature Ecol Evol 2:1418–1427CrossRefGoogle Scholar
  23. Nishida R, Fukami H (1989) Oviposition stimulants of an Aristlochiaceae-feeding swallowtail butterfly, Atrophaneura alcinous. J Chem Ecol 15:2565–2575CrossRefGoogle Scholar
  24. Numata A, Hokimoto K, Shimada A, Yamaguchi H, Takaishi K (1979) Plant constituents biologically active to insects. I. Feeding stimulants for the larvae of the yellow butterfly, Eurema hecabe mandarina. Chem Pharm Bull 27:602–608CrossRefGoogle Scholar
  25. Numata A, Yamaguchi H, Hokimoto K, Ohtani M, Takaishi K (1985) Host-plant selection by the yellow butterfly larvae, Eurema hecabe mandarina (Lepidoptera: Pieridae): attractants and arrestants. Appl Entomol Zool 20:314–321CrossRefGoogle Scholar
  26. Ohsugi T, Nishida R, Fukami H (1991) Multi-component system of oviposition stimulants for a Rutaceae-feeding swallowtail butterfly, Papilio xuthus (Lepidoptera: Papilionidae). Appl Entomol Zool 26:29–40CrossRefGoogle Scholar
  27. Orthen B, Popp M (2000) Cyclitols as cryoprotectants for spinach and chickpea thylakoids. Environ Exp Bot 44:126–132CrossRefGoogle Scholar
  28. Ozaki M, Tominaga Y (1999) Contact chemoreceptors. In: Eguchi E, Tominaga Y (eds) Atlas of arthropod sensory receptors. Springer-Verlag, Tokyo, pp143–154Google Scholar
  29. Papaj DR, Feeny P, Sachdev-Gupta K, Rosenberry L (1992) d-(+)-Pinitol, an oviposition stimulant for the pipevine swallowtail butterfly, Battus philenor. J Chem Ecol 18:799–815CrossRefGoogle Scholar
  30. Plourvier V (1963) Distribution of aliphatic polyols and cyclitols. In: Swain T (ed) Chemical plant taxonomy. Academic Press, London, pp 313–336CrossRefGoogle Scholar
  31. Puttick A, Leon-Cortes J, Legal L (2018) Baronia brevicornis. The IUCN red list of threatened species 2018: e.T2594A119581233.  https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T2594A119581233.en
  32. Reese JC, Chan BG, Waiss AC Jr (1982) Effects of cotton condensed tannin, maysin (corn) and pinitol (soybeans) on Heliothis zea growth and development. J Chem Ecol 8:1429–1436CrossRefGoogle Scholar
  33. Renwick JAA, Chew FS (1994) Oviposition behavior in Lepidoptera. Annu Rev Entomol 39:377–400CrossRefGoogle Scholar
  34. Ryan MF (2002) Insect chemoreception fundamental and applied. Kluwer Academic Publishers, DordrechtGoogle Scholar
  35. Sachdev-Gupta K, Feeny PP, Carter M (1993) Oviposition stimulants for the pipevine swallowtail butterfly, Battus philenor (Papilionidae), from an Aristolochia host plant: synergism between inositols, aristolochic acids and a monogalactosyl diglyceride. Chemoecology 4:19–28CrossRefGoogle Scholar
  36. Scriber JM, Larsen ML, Allen GR, Walker PW, Zalucki MP (2008) Interactions between Papilionidae and ancient Australian angiosperms: evolutionary specialization or ecological monophagy in the Papilionidae? Entomol Exp Appl 128:230–239CrossRefGoogle Scholar
  37. Silva-Brandao KL, Solferini VN (2007) Use of host plants by Troidini butterflies (Papilionidae, Papilioninae): constraints on host shift. Biol J Linn Soc 90:247–261CrossRefGoogle Scholar
  38. The Angiosperm Phylogeny Group (2016) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Environmental Sciences, Faculty of Integrated Arts and SciencesHiroshima UniversityHigashihiroshimaJapan
  2. 2.Drug Engineering divisionChugai Pharmaceutical Co., Ltd.TokyoJapan
  3. 3.Graduate School of Biosphere ScienceHiroshima UniversityHigashihiroshimaJapan
  4. 4.Saijo Ecology InstituteHigashihiroshimaJapan

Personalised recommendations