Advertisement

Journal of Chemical Ecology

, Volume 45, Issue 2, pp 187–197 | Cite as

An IDS-Type Sesquiterpene Synthase Produces the Pheromone Precursor (Z)-α-Bisabolene in Nezara viridula

  • Jason Lancaster
  • Bryan Lehner
  • Ashot Khrimian
  • Andrew Muchlinski
  • Katrin Luck
  • Tobias G. Köllner
  • Donald C. Weber
  • Dawn E. Gundersen-Rindal
  • Dorothea ThollEmail author
Article

Abstract

Insects use a wide range of structurally diverse pheromones for intra-specific communication. Compounds in the class of terpenes are emitted as sex, aggregation, alarm, or trail pheromones. Despite the common occurrence of terpene pheromones in different insect lineages, their origin from dietary host plant precursors or de novo biosynthetic pathways often remains unknown. Several stink bugs (Hemiptera: Pentatomidae) release bisabolene-type sesquiterpenes for aggregation and mating. Here we provide evidence for de novo biosynthesis of the sex pheromone trans−/cis-(Z)-α-bisabolene epoxide of the Southern green stink bug, Nezara viridula. We show that an enzyme (NvTPS) related to isoprenyl diphosphate synthases (IDSs) of the core terpene metabolic pathway functions as a terpene synthase (TPS), which converts the general intermediate (E,E)-farnesyl diphosphate (FPP) to the putative pheromone precursor (+)-(S,Z)-α-bisabolene in vitro and in protein lysates. A second identified IDS-type protein (NvFPPS) makes the TPS substrate (E,E)-FPP and functions as a bona fide FPP synthase. NvTPS is highly expressed in male epidermal tissue associated with the cuticle of ventral sternites, which is in agreement with the male specific release of the pheromone from glandular cells in this tissue. Our study supports findings of the function of similar TPS enzymes in the biosynthesis of aggregation pheromones from the pine engraver beetle Ips pini, the striped flea beetle Phyllotreta striolata, and the harlequin bug Murgantia histrionica, and hence provides growing evidence for the evolution of terpene de novo biosynthesis by IDS-type TPS families in insects.

Keywords

Hemiptera Pentatomidae Southern green stink bug Sex pheromone Terpene synthase Isoprenyl diphosphate synthase 

Notes

Acknowledgements

We are grateful to Megan Herlihy for maintenance of the Nezara colony at ARS IIBBL in Beltsville. This work was supported by Grant 2016-67013-24759 from the USDA National Institute of Food and Agriculture (to D.T., A.K., D.C.W., D.E.G.-R.) and the Virginia Tech Translational Plant Sciences Program.

Supplementary material

10886_2018_1019_MOESM1_ESM.pdf (524 kb)
ESM 1 (PDF 523 kb)

References

  1. Aldrich JR, Oliver JE, Lusby WR, Kochansky JP, Lockwood JA (1987) Pheromone strains of the cosmopolitan pest, Nezara viridula (Heteroptera, Pentatomidae). J Exp Zool 244:171–175CrossRefGoogle Scholar
  2. Baker R, Borges M, Cooke NG, Herbert RH (1987) Identification and synthesis of (Z)-(1'S,3'R,4'S)(−)-2-(3′,4′-epoxy-4′-methylcyclohexyl)-6-methylhepta-2,5-diene, the sex-pheromone of the southern green stinkbug, Nezara viridula (L.). J Chem Soc Chem Commun:414–416.  https://doi.org/10.1039/c39870000414
  3. Bartelt RJ, Cosse AA, Zilkowski BW, Weisleder D, Momany FA (2001) Male-specific sesquiterpenes from Phyllotreta and Aphthona flea beetles. J Chem Ecol 27:2397–2423.  https://doi.org/10.1023/a:1013667229345 CrossRefGoogle Scholar
  4. Belles X, Martin D, Piulachs MD (2005) The mevalonate pathway and the synthesis of juvenile hormone in insects. Annu Rev Entomol 50:181–199.  https://doi.org/10.1146/annurev.ento.50.071803.130356 CrossRefGoogle Scholar
  5. Beran F, Rahfeld P, Luck K, Nagel R, Vogel H, Wielsch N, Irmisch S, Ramasamy S, Gershenzon J, Heckel DG, Köllner TG (2016a) Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle. Proc Natl Acad Sci U S A 113:2922–2927.  https://doi.org/10.1073/pnas.1523468113 CrossRefGoogle Scholar
  6. Beran F, Jiménez-Alemán GH, Lin MY, Hsu YC, Mewis I, Srinivasan R, Ulrichs C, Boland W, Hansson BS, Reinecke A (2016b) The aggregation pheromone of Phyllotreta striolata (Coleoptera: Chrysomelidae) revisited. J Chem Ecol 42:748–755.  https://doi.org/10.1007/s10886-016-0743-6 CrossRefGoogle Scholar
  7. Blomquist G, Vogt R (2003) Insect pheromone biochemistry and molecular biology. The biosynthesis and detection of pheromones and plant volatiles. Elsevier, LondonGoogle Scholar
  8. Bodemann RR et al (2012) Precise RNAi-mediated silencing of metabolically active proteins in the defence secretions of juvenile leaf beetles. Proc R Soc B 279:4126–4134.  https://doi.org/10.1098/rspb.2012.1342 CrossRefGoogle Scholar
  9. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120.  https://doi.org/10.1093/bioinformatics/btu170 CrossRefGoogle Scholar
  10. Brezot P, Malosse C, Renou M (1993) Study of the attractivity of the male pheromone in Nezara viridula L. (Heteroptera: Pentatomidae). CR Acad Sci III-Vie 316:671–675Google Scholar
  11. Brezot P, Malosse C, Mori K, Renou M (1994) Bisabolene epoxides in sex pheromone in Nezara viridula (L.) (Heteroptera: Pentatomidae): Role of cis isomer and relation to specificity of pheromone. J Chem Ecol 20:3133–3147.  https://doi.org/10.1007/BF02033716 CrossRefGoogle Scholar
  12. Brown AE, Riddick EW, Aldrich JR, Holmes WE (2006) Identification of (−)-beta-caryophyllene as a gender-specific terpene produced by the multicolored Asian lady beetle. J Chem Ecol 32:2489–2499.  https://doi.org/10.1007/s10886-006-9158-0 CrossRefGoogle Scholar
  13. Cai Y, Jia JW, Crock J, Lin ZX, Chen XY, Croteau R (2002) A cDNA clone for beta-caryophyllene synthase from Artemisia annua. Phytochemistry 61:523–529.  https://doi.org/10.1016/S0031-9422(02)00265-0 CrossRefGoogle Scholar
  14. Capinera J (2001) Handbook of vegetable pests. Academic Press, San DiegoGoogle Scholar
  15. Chen X, Gottlieb L, Millar JG (2000) Highly stereoselective syntheses of the sex pheromone components of the southern green stink bug Nezara viridula (L.) and green stink bug Acrosternum hilare (say). Synthesis:269–272Google Scholar
  16. Chen F, Tholl D, Bohlmann J, Pichersky E (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66:212–229.  https://doi.org/10.1111/j.1365-313X.2011.04520.x CrossRefGoogle Scholar
  17. Christianson DW (2017) Structural and chemical biology of terpenoid cyclases. Chem Rev 117:11570–11648.  https://doi.org/10.1021/acs.chemrev.7b00287 CrossRefGoogle Scholar
  18. Cribb BW, Siriwardana KN, Walter GH (2006) Unicellular pheromone glands of the pentatomid bug Nezara viridula (Heteroptera: Insecta): ultrastructure, classification, and proposed function. J Morphol 267:831–840.  https://doi.org/10.1002/jmor.10442 CrossRefGoogle Scholar
  19. Cusson M, Béliveau C, Sen SE, Vandermoten S, Rutledge RG, Stewart D, Francis F, Haubruge É, Rehse P, Huggins DJ, Dowling APG, Grant GH (2006) Characterization and tissue-specific expression of two lepidopteran farnesyl diphosphate synthase homologs: implications for the biosynthesis of ethyl-substituted juvenile hormones. Proteins 65:742–758.  https://doi.org/10.1002/prot.21057 CrossRefGoogle Scholar
  20. Degenhardt J, Köllner TG, Gershenzon J (2009) Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70:1621–1637.  https://doi.org/10.1016/j.phytochem.2009.07.030 CrossRefGoogle Scholar
  21. Delay F, Ohloff G (1979) Synthesis and absolute configuration of (E)-α-bisabolenes and (Z)-α-bisabolenes. Helv Chim Acta 62:369–377.  https://doi.org/10.1002/hlca.19790620203 CrossRefGoogle Scholar
  22. Dewhirst SY, Pickett JA, Hardie J (2010) Aphid pheromones. In: Litwack G (ed) Vitamins and hormones: pheromones, vol 83. Academic Press, pp 551-574.  https://doi.org/10.1016/s0083-6729(10)83022-5
  23. Dickschat JS (2016) Bacterial terpene cyclases. Nat Prod Rep 33:87–110.  https://doi.org/10.1039/c5np00102a CrossRefGoogle Scholar
  24. Esquivel JF, Musolin DL, Jones WA, Rabitsch W, Greene JK, Toews MD, Schwertner CF, Grazia J, McPherson RM (2018) Nezara viridula (L.). In: McPherson JE (ed) Invasive stink bugs and related species (Pentatomoidea): biology, higher systematics, Semiochemistry, and management. CRC Press, Boca Raton, pp 351–423Google Scholar
  25. Frick S, Nagel R, Schmidt A, Bodemann RR, Rahfeld P, Pauls G, Brandt W, Gershenzon J, Boland W, Burse A (2013) Metal ions control product specificity of isoprenyl diphosphate synthases in the insect terpenoid pathway. Proc Natl Acad Sci U S A 110:56–61.  https://doi.org/10.1073/pnas.1221489110 CrossRefGoogle Scholar
  26. Gilg AB, Bearfield JC, Tittiger C, Welch WH, Blomquist GJ (2005) Isolation and functional expression of an animal geranyl diphosphate synthase and its role in bark beetle pheromone biosynthesis. Proc Natl Acad Sci U S A 102:9760–9765.  https://doi.org/10.1073/pnas.0503277102 CrossRefGoogle Scholar
  27. Gilg AB, Tittiger C, Blomquist GJ (2009) Unique animal prenyltransferase with monoterpene synthase activity. Naturwissenschaften 96:731–735.  https://doi.org/10.1007/s00114-009-0521-1 CrossRefGoogle Scholar
  28. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652.  https://doi.org/10.1038/nbt.1883 CrossRefGoogle Scholar
  29. Greene JK, Turnipseed SG, Sullivan MJ, Herzog GA (1999) Boll damage by southern green stink bug (Hemiptera: Pentatomidae) and tarnished plant bug (Hemiptera: Miridae) caged on transgenic Bacillus thuringiensis cotton. J Econ Entomol 92:941–944.  https://doi.org/10.1093/jee/92.4.941 CrossRefGoogle Scholar
  30. Harris VE, Todd JW (1980) Male-mediated aggregation of male, female and 5th-instar southern green stink bugs and concomitant attraction of a tachinid parasite, Trichopoda pennipes. Entomol Exp Appl 27:117–126.  https://doi.org/10.1111/j.1570-7458.1980.tb02955.x CrossRefGoogle Scholar
  31. Honda K (1981) Larval osmeterial secretions of the swallowtails (Papilio). J Chem Ecol 7:1089–1113.  https://doi.org/10.1007/bf00987631 CrossRefGoogle Scholar
  32. Jurenka R (2004) Insect pheromone biosynthesis. In: Schulz S (ed) Chemistry of pheromones and other Semiochemicals I, vol 239. Topics in current chemistry. pp 97-131.  https://doi.org/10.1007/b95450
  33. Jurenka RA, Subchev M, Abad JL, Choi MY, Fabrias G (2003) Sex pheromone biosynthetic pathway for disparlure in the gypsy moth, Lymantria dispar. Proc Natl Acad Sci U S A 100:809–814.  https://doi.org/10.1073/pnas.0236060100 CrossRefGoogle Scholar
  34. Khrimian A, Shirali S, Vermillion KE, Siegler MA, Guzman F, Chauhan K, Aldrich JR, Weber DC (2014) Determination of the stereochemistry of the aggregation pheromone of harlequin bug, Murgantia histrionica. J Chem Ecol 40:1260–1268.  https://doi.org/10.1007/s10886-014-0521-2 CrossRefGoogle Scholar
  35. Lancaster J, Khrimian A, Young S, Lehner B, Luck K, Wallingford A, Ghosh SKB, Zerbe P, Muchlinski A, Marek PE, Sparks ME, Tokuhisa JG, Tittiger C, Köllner TG, Weber DC, Gundersen-Rindal DE, Kuhar TP, Tholl D (2018) De novo formation of an aggregation pheromone precursor by an isoprenyl diphosphate synthase-related terpene synthase in the harlequin bug. Proc Natl Acad Sci U S A 115:E8634–E8641.  https://doi.org/10.1073/pnas.1800008115 CrossRefGoogle Scholar
  36. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9:357–359.  https://doi.org/10.1038/nmeth.1923 CrossRefGoogle Scholar
  37. Lewis MJ, Prosser IM, Mohib A, Field LM (2008) Cloning and characterisation of a prenyltransferase from the aphid Myzus persicae with potential involvement in alarm pheromone biosynthesis. Insect Mol Biol 17:437–443.  https://doi.org/10.1111/j.1365-2583.2008.00815.x CrossRefGoogle Scholar
  38. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC T method. Methods 25:402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefGoogle Scholar
  39. Ma GY, Sun XF, Zhang YL, Li ZX, Shen ZR (2010) Molecular cloning and characterization of a prenyltransferase from the cotton aphid, Aphis gossypii. Insect Biochem Mol Biol 40:552–561.  https://doi.org/10.1016/j.ibmb.2010.05.003 CrossRefGoogle Scholar
  40. Müller M, Buchbauer G (2011) Essential oil components as pheromones. A review. Flavour Frag J 26:357–377.  https://doi.org/10.1002/ffj.2055 CrossRefGoogle Scholar
  41. Noriega FG (2014) Juvenile hormone biosynthesis in insects: what is new, what do we know, and what questions remain? ISRN Zoology 967361Google Scholar
  42. Omura H, Honda K, Feeny P (2006) From terpenoids to aliphatic acids: further evidence for late-instar switch in osmeterial defense as a characteristic trait of swallowtail butterflies in the tribe Papilionini. J Chem Ecol 32:1999–2012.  https://doi.org/10.1007/s10886-006-9124-x CrossRefGoogle Scholar
  43. Pickett JA, Allemann RK, Birkett MA (2013) The semiochemistry of aphids. Nat Prod Rep 30:1277–1283.  https://doi.org/10.1039/c3np70036d CrossRefGoogle Scholar
  44. Scalabrino G, Sun X-W, Mann J, Baron A (2003) A convergent approach to the marine natural product eleutherobin: synthesis of key intermediates and attempts to produce the basic skeleton. Org Biomol Chem 1:318–327.  https://doi.org/10.1039/b207800g CrossRefGoogle Scholar
  45. Sen SE, Cusson M, Trobaugh C, Béliveau C, Richard T, Graham W, Mimms A, Roberts G (2007) Purification, properties and heteromeric association of type-1 and type-2 lepidopteran farnesyl diphosphate synthases. Insect Biochem Mol Biol 37:819–828.  https://doi.org/10.1016/j.ibmb.2007.05.012 CrossRefGoogle Scholar
  46. Sillam-Dusses D et al (2009) Identification by GC-EAD of the two-component trail-following pheromone of Prorhinotermes simplex (Isoptera, Rhinotermitidae, Prorhinotermitinae). J Insect Physiol 55:751–757.  https://doi.org/10.1016/j.jinsphys.2009.04.007 CrossRefGoogle Scholar
  47. Sobotnik J, Hanus R, Kalinova B, Piskorski R, Cvacka J, Bourguignon T, Roisin Y (2008) (E,E)-alpha-farnesene, an alarm pheromone of the termite Prorhinotermes canalifrons. J Chem Ecol 34:478–486.  https://doi.org/10.1007/s10886-008-9450-2 CrossRefGoogle Scholar
  48. Sparks ME, Rhoades JH, Nelson DR, Kuhar D, Lancaster J, Lehner B, Tholl D, Weber DC, Gundersen-Rindal DE (2017) A transcriptome survey spanning life stages and sexes of the harlequin bug, Murgantia histrionica. Insects 8:55.  https://doi.org/10.3390/insects8020055 CrossRefGoogle Scholar
  49. Stokl J, Steiger S (2017) Evolutionary origin of insect pheromones. Curr Opin Insect Sci 24:36–42.  https://doi.org/10.1016/j.cois.2017.09.004 CrossRefGoogle Scholar
  50. Taban AH, Tittiger C, Blomquist GJ, Welch WH (2009) Isolation and characterization of farnesyl diphosphate synthase from the cotton boll weevil, Anthonomus grandis. Arch Insect Biochem Physiol 71:88–104.  https://doi.org/10.1002/arch.20302 CrossRefGoogle Scholar
  51. Tholl D (2015) Biosynthesis and biological functions of terpenoids in plants. In: Schrader J, Bohlmann J (eds) Biotechnology of isoprenoids, vol 148. Adv Biochem Eng-Biotechnol. pp 63-106.  https://doi.org/10.1007/10_2014_295
  52. Tholl D, Chen F, Petri J, Gershenzon J, Pichersky E (2005) Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J 42:757–771.  https://doi.org/10.1111/j.1365-313X.2005.02417.x CrossRefGoogle Scholar
  53. Tillman JA, Seybold SJ, Jurenka RA, Blomquist GJ (1999) Insect pheromones - an overview of biosynthesis and endocrine regulation. Insect Biochem Mol Biol 29:481–514.  https://doi.org/10.1016/s0965-1748(99)00016-8 CrossRefGoogle Scholar
  54. Vandermoten S, Charloteaux B, Santini S, Sen SE, Béliveau C, Vandenbol M, Francis F, Brasseur R, Cusson M, Haubruge É (2008) Characterization of a novel aphid prenyltransferase displaying dual geranyl/farnesyl diphosphate synthase activity. FEBS Lett 582:1928–1934.  https://doi.org/10.1016/j.febslet.2008.04.043 CrossRefGoogle Scholar
  55. Wallrapp FH, Pan JJ, Ramamoorthy G, Almonacid DE, Hillerich BS, Seidel R, Patskovsky Y, Babbitt PC, Almo SC, Jacobson MP, Poulter CD (2013) Prediction of function for the polyprenyl transferase subgroup in the isoprenoid synthase superfamily. Proc Natl Acad Sci U S A 110:E1196–E1202.  https://doi.org/10.1073/pnas.1300632110 CrossRefGoogle Scholar
  56. Weber DC, Walsh GC, DiMeglio AS, Athanas MM, Leskey TC, Khrimian A (2014) Attractiveness of harlequin bug, Murgantia histrionica, aggregation pheromone: field response to isomers, ratios, and dose. J Chem Ecol 40:1251–1259.  https://doi.org/10.1007/s10886-014-0519-9 CrossRefGoogle Scholar
  57. Weber DC, Khrimian A, Blassioli-Moraes MC, Millar JG (2018) Semiochemistry of Pentatomoidea. In: McPherson JE (ed) Invasive stink bugs and related species (Pentatomoidea): biology, higher systematics, Semiochemistry, and management. CRC Press, Boca Raton, pp 677–725Google Scholar
  58. Yew JY, Chung H (2015) Insect pheromones: an overview of function, form, and discovery. Prog Lipid Res 59:88–105.  https://doi.org/10.1016/j.plipres.2015.06.001 CrossRefGoogle Scholar
  59. Zahn DK, Moreira JA, Millar JG (2008) Identification, synthesis, and bioassay of a male-specific aggregation pheromone from the harlequin bug, Murgantia histrionica. J Chem Ecol 34:238–251.  https://doi.org/10.1007/s10886-007-9415-x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jason Lancaster
    • 1
  • Bryan Lehner
    • 1
  • Ashot Khrimian
    • 2
  • Andrew Muchlinski
    • 1
  • Katrin Luck
    • 3
  • Tobias G. Köllner
    • 3
  • Donald C. Weber
    • 2
  • Dawn E. Gundersen-Rindal
    • 2
  • Dorothea Tholl
    • 1
    Email author
  1. 1.Department of Biological SciencesBlacksburgUSA
  2. 2.Invasive Insect Biocontrol and Behavior Laboratory, US Department of AgricultureAgricultural Research ServiceBeltsvilleUSA
  3. 3.Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany

Personalised recommendations