Advertisement

α-Amylase Mediates Host Acceptance in the Braconid Parasitoid Cotesia flavipes

  • Gladys Bichang’a
  • Jean-Luc Da Lage
  • Claire Capdevielle-Dulac
  • Michel Zivy
  • Thierry Balliau
  • Kevin Sambai
  • Bruno Le Ru
  • Laure Kaiser
  • Gerald Juma
  • Esther Njoki Mwangi Maina
  • Paul-André Calatayud
Article

Abstract

Foraging parasitoids use chemical signals in host recognition and selection processes. Although, the volatiles play a relevant role in the localization by parasitoids of their hosts feeding on plants, the host identification process for acceptance occurs mainly during contact between the parasitoid and its host where host products related to feeding activities, fecal pellets and oral secretions, play a crucial role. The purpose of this study was to identify the nature of the contact kairomone(s) that mediate the acceptance for oviposition of the parasitoid Cotesia flavipes Cameron (Hymenoptera, Braconidae), which was released in Kenya in 1993 to control the invasive crambid Chilo partellus (Swinhoe). Using host and non-hosts of C. flavipes, we showed that it is mainly the oral secretions of the larvae that harbour the active compound(s) that mediate host acceptance for oviposition by C. flavipes. Using an integration of behavioral observations and biochemical approaches, the active compound of the oral secretions was identified as an α-amylase. Using synthetized α-amylases from Drosophila melanogaster (an insect model for which syntheses of active and inactive α-amylases are available), we observed that the conformation of the enzyme rather than its catalytic site as well as its substrate and its degradation product is responsible for host acceptance and oviposition mediation of C. flavipes females. The results suggest that the α-amylase from oral secretions of the caterpillar host is a good candidate for an evolutionary solution to host acceptance for oviposition in C. flavipes.

Keywords

Biological control Pest insects Lepidoptera stemborers Chilo partellus Cotesia flavipes Kairomone α-amylase Host recognition Parasitoids Host oral secretion Multitrophic interactions Semiochemicals 

Notes

Acknowledgements

The authors wish to thank IRD and ANR ABC PaPoGen (ANR-12-ADAP-0001) for funding the research; DAAD for funding the PhD fellowship under the grant number 91560009, University of Nairobi and icipe capacity building for hosting the PhD student. We thank Julius Obonyo and Peter Malusi for rearing the host insects and the parasitoids, and Peter Ahuya from icipe (Nairobi, Kenya) for his technical assistance in collecting the oral secretions of C. partellus. Thanks also to Fritz Schulthess for his review of the manuscript.

Supplementary material

10886_2018_1002_MOESM1_ESM.mov (1.6 mb)
ESM 1 Video showing the behavior of a gravid Cotesia flavipes female on a cotton wool ball with 1 μl of oral secretion of Chilo partellus. The parasitic wasp exhibited host recognition and acceptance by antennating the surface of the cotton wool ball followed by at least one stinging attempt indicating acceptance for oviposition. (MOV 1625 kb)
10886_2018_1002_MOESM2_ESM.docx (1.1 mb)
ESM 2 (DOCX 1163 kb)
10886_2018_1002_MOESM3_ESM.xlsx (42 kb)
ESM 3 Results of proteins and peptides obtained by X!Tandem as well as proteins and peptides obtained by de novo (see attached excel table). (XLSX 41 kb)
10886_2018_1002_MOESM4_ESM.docx (98 kb)
ESM 4 (DOCX 98 kb)

References

  1. Aghajari N, Roth M, Haser R (2002) Crystallographic evidence of a transglycosylation reaction: ternary complexes of a psychrophilic α-amylase. Biochemistry 41:4273–4280CrossRefPubMedGoogle Scholar
  2. Bénédet F, Bigot Y, Renault S, Pouzat J, Thibout E (1999) Polypeptides of Acrolepiopsis assectella cocoon (Lepidoptera: Yponomeutoidea): an external host-acceptance kairomone for the parasitoid Diadromus pulchellus (Hymenoptera Ichneumonidae). J Insect Physiol 45:375–384CrossRefPubMedGoogle Scholar
  3. Bichang’a G (2013) Identification of kairomones mediating host recognition and acceptance by Cotesia spp. in Kenya. Dissertation, University of NairobiGoogle Scholar
  4. Chng WA, Bou Sleiman MS, Schüpfer F, Lemaitre B (2014) Transforming growth factor β/activin signaling functions as a sugar-sensing feedback loop to regulate digestive enzyme expression. Cell Rep 9:336–348CrossRefPubMedGoogle Scholar
  5. Chrambach A, Jovin TM (1983) Selected buffer systems for moving boundary electrophoresis on gels at various pH values, presented in a simplified manner. Electrophoresis 4:190–204CrossRefGoogle Scholar
  6. Commin C, Aumont-Nicaise M, Claisse G, Feller G, Da Lage J-L (2013) Enzymatic characterization of recombinant α-amylase in the Drosophila melanogaster species subgroup: is there an effect of specialization on digestive enzyme? Genes Genet Syst 88:251–259Google Scholar
  7. Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20:1466–1467CrossRefPubMedGoogle Scholar
  8. Cugala D, Overholt WA, Santos L, Giga D (2001) Release of Cotesia flavipes Cameron for biological control of cereal stemborers in two ecological zones in Mozambique. Int J Trop Insect Sci 21:303–310CrossRefGoogle Scholar
  9. Da Lage J-L, Renard E, Chartois F, Lemeunier F, Cariou M-L (1998) Amyrel, a paralogous gene of the amylase gene family in Drosophila melanogaster and the Sophophora subgenus. Proc Natl Acad Sci U S A 95:6848–6853CrossRefPubMedPubMedCentralGoogle Scholar
  10. Da Lage J-L, Van Wormhoudt A, Cariou M-L (2002) Diversity and evolution of the α-amylase genes in animals. Biol Bratisl 57(Suppl 11):181–189Google Scholar
  11. Dicke M (2016) Induced plant volatiles: plant body odours structuring ecological networks. New Phytol 210:10–12CrossRefPubMedGoogle Scholar
  12. Erb M, Robert CAM, Hibbard BE, Turlings TCJ (2011) Sequence of arrival determines plant-mediated interactions between herbivores. J Ecol 99:7–15CrossRefGoogle Scholar
  13. Frank A, Pevzner P 2005. PepNovo: de novo peptide sequencing via probabilistic network modeling. Anal Chem 77:964–73.Google Scholar
  14. Gauthier N, Mandon N, Renault S, Bénédet F (2004) The Acrolepiopsis assectella silk -cocoon: kairomonal function and chemical characterization. J Insect Physiol 50:1065–1074CrossRefPubMedGoogle Scholar
  15. Godfray HCJ (1994) Parasitoids: Behavioural and evolutionary ecology. Princeton University Press, New JerseyGoogle Scholar
  16. Harris KM (1990) Bioecology of sorghum stemborers. Insect Sci Appl 11:467–477Google Scholar
  17. Harvey JA, van Nouhuys S, Biere A (2005) Effects of quantitative variation in allelochemicals in Plantago lanceolata on development of a generalist and a specialist herbivore and their endoparasitoids. J Chem Ecol 31:287–302CrossRefPubMedGoogle Scholar
  18. Heil M (2008) Indirect defence via tritrophic interactions. New Phytol 178:41–61CrossRefPubMedGoogle Scholar
  19. Inayatullah C (1983) Host selection by Apanteles flavipes (Cameron) (Hymenoptera: Braconidae): influence of host and host plant. J Econ Entomol 76:1086–1087CrossRefGoogle Scholar
  20. Jiang N, Zhou G, Overholt WA, Schulthess F (2006) The synchrony of the stemborer and parasitoid populations of coastal Kenya. Ann Soc Entomol Fr 42:381–388.Google Scholar
  21. Kaiser L, Ode P, van Nouhuys S, Calatayud P-A, Colazza S, Cortesero A-M, Thiel A, van Baaren J (2017a) The plant as a habitat for Entomophagous insects. In: Sauvion N, Calatayud P-A, Thiéry D (eds) Insect-plant interactions in a crop protection perspective. Advances in Botanical Research series, Vol 81. Elsevier, GBR, p 179–224.  https://doi.org/10.1016/bs.abr.2016.09.006
  22. Kaiser L, Dupas S, Branca A, Herniou EA, Clarke CW, Capdevielle-Dulac C, Obonyo J, Benoist R, Gauthier J, Calatayud P-A, Silvain J-F, Le Ru BP (2017b) The Cotesia sesamiae story: insight into host-range evolution in a Hymenoptera parasitoid and implication for its use in biological control programs. Genetica 145:455–468CrossRefPubMedGoogle Scholar
  23. Kfir R (1992) Seasonal abundance of the stem borer Chilo partellus (Lepidoptera: Pyralidae) and its parasites on summer grain crops. J Econ Entomol 85:518–529CrossRefGoogle Scholar
  24. Kfir R, Overholt WA, Khan ZR, Polaszek A (2002) Biology and management of economically important lepidopteran cereal stemborers in Africa. Annu Rev Entomol 47:701–731CrossRefPubMedGoogle Scholar
  25. Kurien BT, Scofield RH (2012) Extraction of proteins from gels: a brief review. Methods Mol Biol 869:403–405CrossRefPubMedGoogle Scholar
  26. Langella O, Valot B, Balliau T, Blein-Nicolas M, Bonhomme L, Zivy M (2016) X! TandemPipeline: a tool to manage sequence redundancy for protein inference and phosphosite identification. J Proteome Res 16:494–503CrossRefPubMedGoogle Scholar
  27. Loyter A, Schramm M (1962) Charcoal-celite column. Biochim Biophys Acta 65:200–206CrossRefPubMedGoogle Scholar
  28. Mackey AJ, Haystead TA, Pearson WR (2002) Getting more from less algorithms for rapid protein identification with multiple short peptide sequences. Mol Cell Proteomics 1:139–147CrossRefPubMedGoogle Scholar
  29. Mailafiya DM, Le Ru BP, Kairu EW, Calatayud P-A, Dupas S (2009) Species diversity of lepidopteran stem borer parasitoids in cultivated and natural habitats in Kenya. J Appl Entomol 133:416–429CrossRefGoogle Scholar
  30. Marascuilo L (1966) Large-sample multiple comparisons. Psychol Bull 65:289–299CrossRefGoogle Scholar
  31. Mohyuddin AI, Inayatullah C, King EG (1981) Host selection and strain occurrence in Apanteles flavipes (Cameron) (Hymnoptera: Braconidae) and its rearing on biological control of graminaceous stem-borers (Lepidoptera: Pyralidae). Bull Entomol Res 71:575–581CrossRefGoogle Scholar
  32. Muirhead KA, Murphy NP, Sallam N, Donnellan SC, Austin AD (2012) Phylogenetics and genetic diversity of the Cotesia flavipes complex of parasitoid wasps (Hymenoptera: Braconidae), biological control agents of lepidopteran stemborers. Mol Phylogenet Evol 63:904–914CrossRefPubMedGoogle Scholar
  33. Ngi-Song AJ, Overholt WA (1997) Host location and acceptance of Cotesia flavipes Cameron and Cotesia sesamiae (Cameron) (Hymenoptera: Braconidae), parasitoids of African stemborers : role of frass and other cues. Biol Control 9:136–142CrossRefGoogle Scholar
  34. Niepmann M, Zheng J (2006) Discontinuous native protein gel electrophoresis. Electrophoresis 27:3949–3951CrossRefPubMedGoogle Scholar
  35. Obonyo M, Schulthess F, Juma G, Wanyama O, Le Ru B, Calatayud P-A (2008) Location, acceptance and suitability of lepidopteran stemborers feeding on a cultivated and wild host-plant to endoparasitoid Cotesia flavipes Cameron (Hymenoptera: Braconidae). Biol Control 45:36–47CrossRefGoogle Scholar
  36. Obonyo M, Schulthess F, Le Ru B, Van Den Berg J, Calatayud P-A (2010a) Host recognition and acceptance behaviour in Cotesia sesamiae and C. flavipes (Hymenoptera: Braconidae), parasitoids of gramineous stemborers in Africa. Eur J Entomol 107:169–176CrossRefGoogle Scholar
  37. Obonyo M, Schulthess F, Le Ru B, Van Den Berg J, Silvain J-F, Calatayud P-A (2010b) Importance of contact chemical cues in host recognition and acceptance by the braconid larval endoparasitoids Cotesia sesamiae and Cotesia flavipes. Biol Control 54:270–275CrossRefGoogle Scholar
  38. Obonyo M, Schulthess F, Chimtawi M, Mascarel G, Ahuya PO, Le Ru B, Van Den Berg J, Silvain J-F, Calatayud P-A (2011) Sensilla on antennae, ovipositor and tarsi of the larval parasitoids, Cotesia sesamiae (Cameron 1906) and Cotesia flavipes Cameron 1891 (Hymenoptera: Braconidae): a comparative scanning electron microscopy study. Ann Soc Entomol Fr 47(1–2):119–127CrossRefGoogle Scholar
  39. Ochieng RS, Onyango FO, Bungu MDO (1985) Improvement of techniques for mass culture of Chilo partellus (Swinhoe). Insect Sci Appl 6:425–428Google Scholar
  40. Onyango FO, Ochieng’-Odero JPR (1994) Continuous rearing of the maize stemborer Busseola fusca on an artificial diet. Entomol Exp Appl 73:139–144CrossRefGoogle Scholar
  41. Overholt WA, Ochieng JO, Lammers PM, Ogedah K (1994) Rearing and field release methods for Cotesia flavipes Cameroon (Hymenoptera: Braconidae), a parasitoid of tropical gramineous stemborers. Insect Sci Appl 15:253–259Google Scholar
  42. Polaszek A (1998) African cereal Stemborers: economic importance, taxonomy, Natural Enemies and Control. CABI, WallingfordGoogle Scholar
  43. Potting RPJ, Osae-Danso F, Overholt WA, Ngi-Song AJ (1993) Host selection in Cotesia flavipes, parasitoid of tropical stemborers. Proc Exp Appl Entomol 4:47–52Google Scholar
  44. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85.Google Scholar
  45. Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host seeking parasitic wasps. Science 250:1251–1253CrossRefPubMedGoogle Scholar
  46. Van Leerdam MB, Smith JW Jr, Fuchs TW (1985) Frass-mediated, host finding behaviour of Cotesia flavipes, a braconid parasite of Diatraea saccharalis (Lepidoptera: Pyralidae). Ann Entomol Soc Am 78:647–650CrossRefGoogle Scholar
  47. Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172CrossRefGoogle Scholar
  48. Vinson SB (1975) Biochemical convolution between parasitoids and their hosts. In: Price PW (ed) Evolutionary strategies of parasitic insects and mites. Plenum Press, New YorkGoogle Scholar
  49. Vinson SB (1976) Host selection by insect parasitoids. Annu Rev Entomol 21:109–134CrossRefGoogle Scholar
  50. Vinson SB (1985) The behaviour of parasitoids. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology. Pergamon Press, New YorkGoogle Scholar
  51. Wajnberg E, Colazza S (2013) Chemical ecology of insect parasitoids. Whiley-Blackwell, A John Wiley & Sons, Ltd., Publication, UKCrossRefGoogle Scholar
  52. Wajnberg E, Bernstein C, Van Alphen J (2008) Behavioral of ecology of insect parasitoids. Blackwell Publishing, USA, UK, AustraliaCrossRefGoogle Scholar
  53. Weseloh RM (1977) Effects on behavior of Apanteles melanoscelus females caused by modifications in extraction, storage and presentation of gypsy moth silk kairomone. J Chem Ecol 3:723–735CrossRefGoogle Scholar
  54. Zhou G, Baumgartner J, Overholt WA (2001) Impact of an exotic parasitoid on stemborer (Lepidoptera) population dynamics in Kenya. Ecol Entomol 11:1554–1561Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Gladys Bichang’a
    • 1
    • 2
  • Jean-Luc Da Lage
    • 3
    • 4
  • Claire Capdevielle-Dulac
    • 3
    • 4
  • Michel Zivy
    • 5
  • Thierry Balliau
    • 5
  • Kevin Sambai
    • 1
  • Bruno Le Ru
    • 1
    • 3
    • 4
  • Laure Kaiser
    • 3
    • 4
  • Gerald Juma
    • 2
  • Esther Njoki Mwangi Maina
    • 2
  • Paul-André Calatayud
    • 1
    • 3
    • 4
  1. 1.IRD c/o icipeNairobiKenya
  2. 2.Department of BiochemistryUniversity of NairobiNairobiKenya
  3. 3.UMR Laboratoire Evolution, Génomes, Comportement et Ecologie, UPR 9034, 22 CNRS/IRDGif-sur-YvetteFrance
  4. 4.Université de Paris-SudOrsayFrance
  5. 5.PAPPSO, GQE – Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-SaclayGif-sur-YvetteFrance

Personalised recommendations