Advertisement

Journal of Chemical Ecology

, Volume 44, Issue 10, pp 957–964 | Cite as

Complex Interactions among Sheep, Insects, Grass, and Fungi in a Simple New Zealand Grazing System

  • Thomas L. BultmanEmail author
  • Mark R. McNeill
  • Kelly Krueger
  • Gina De Nicolo
  • Alison J. Popay
  • David E. Hume
  • Wade J. Mace
  • Lester R. Fletcher
  • Yew Meng Koh
  • Terrence J. Sullivan
Article

Abstract

Epichloë fungi (Ascomycota) live within aboveground tissues of grasses and can have important implications for natural and managed ecosystems through production of alkaloids. Nonetheless, vertebrate herbivores may possess traits, like oral secretions, that mitigate effects of alkaloids. We tested if sheep saliva mitigates effects of Epichloë alkaloids on a beetle pest of perennial ryegrass (Lolium perenne L.) in a New Zealand pasture setting. Plants with one of several fungal isolates were clipped with scissors, grazed by sheep, or clipped with sheep saliva applied to cut ends of stems. We then assessed feeding damage by Argentine stem weevils on blade segments collected from experimental plants. We found that clipping plants induced synthesis of an alkaloid that reduces feeding by beetles and that sheep saliva mitigates this effect. Unexpectedly, the alkaloid (perloline) that explains variation in beetle feeding is one produced not by the endophyte, but rather by the plant. Yet, these effects depended upon fungal isolate. Such indirect, complex interactions may be much more common in both managed and natural grassland systems than typically thought and could have implications for managing grazing systems.

Keywords

Agroecology Endophytic fungi Indirect interactions New Zealand Plant-insect interactions Plant-mediated interactions Tritrophic interactions Alkaloid Saliva Sheep grazing 

Notes

Acknowledgments

L. Sutherland provided valuable assistance in care and control of sheep and A. De Bonth completed immunoblot analyses. S. Goldson contributed to discussions about grazing ecosystems. Funding was provided by US National Science Foundation award IOS-1119775 to TLB.

Supplementary material

10886_2018_993_Fig4_ESM.png (88 kb)
Fig. S1

(PNG 88 kb)

10886_2018_993_MOESM1_ESM.eps (1006 kb)
High resolution image (EPS 1006 kb)
10886_2018_993_Fig5_ESM.png (104 kb)
Fig. S2_1

(PNG 103 kb)

10886_2018_993_MOESM2_ESM.eps (212 kb)
High resolution image (EPS 211 kb)
10886_2018_993_Fig6_ESM.png (106 kb)
Fig. S2_2

(PNG 106 kb)

10886_2018_993_MOESM3_ESM.eps (213 kb)
High resolution image (EPS 212 kb)
10886_2018_993_Fig7_ESM.png (110 kb)
Fig. S2_3

(PNG 110 kb)

10886_2018_993_MOESM4_ESM.eps (215 kb)
High resolution image (EPS 214 kb)
10886_2018_993_Fig8_ESM.png (113 kb)
Fig. S2_4

(PNG 113 kb)

10886_2018_993_MOESM5_ESM.eps (215 kb)
High resolution image (EPS 214 kb)
10886_2018_993_MOESM6_ESM.docx (18 kb)
Table S1 (DOCX 18 kb)

References

  1. Bellamy W, Yamauchi K, Wakabayashi H, Takase M, Shimamura S, Tomita M (1994) Antifungal properties of lactoferricin B, a peptide derived from the N-terminal region of bovine lactoferrin. Lett Appl Microbiol 18:230–233CrossRefGoogle Scholar
  2. Bouton JH, Latch GCM, Hill NS, Hoveland CS, McCann MA, Watson RH, Parish JA, Hawkins LL, Thompson FN (2002) Re-infection of tall fescue cultivars with non-ergot alkaloid producing endophytes. Agron J 94:567–574CrossRefGoogle Scholar
  3. Bultman TL, Bell G, Martin WA (2004) A fungal endophyte mediates reversal of wound-induced resistance and constrains tolerance in a grass. Ecology 85:679–685CrossRefGoogle Scholar
  4. Bush LP (2001) Perloline, the forgotten plant alkaloid. In: Gomide JA, WRS M, da Silva SC (eds) Proceed. XIX Inter. Grassland Congr, São Paulo, pp 461–462Google Scholar
  5. Bush LP, Streeter C, Buckner RC (1970) Perloline inhibition of in vitro ruminal cellulose digestion. Crop Sci 10:108–109CrossRefGoogle Scholar
  6. Clay K (1988) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69:10–16CrossRefGoogle Scholar
  7. Daley GT (1990) The grasslands of New Zealand. In: Langer RHM (ed) Pastures, their ecology and management. Oxford Univ. Press, Auckland, pp 1–38Google Scholar
  8. DeBattista JP, Bacon CW, Severson R, Plattner RD, Bouton JH (1990) Indole acetic acid production by the fungal endophytes of tall fescue. Agron J 82:878–880CrossRefGoogle Scholar
  9. Denno RF, Peterson ME, Gratton C, Cheng J, Langellotto GA, Huberty AF et al (2008) Feeding-induced changes in plant quality mediate interspecific competition between sap-feeding herbivores. Ecology 81:1814–1827CrossRefGoogle Scholar
  10. Detling JK, Dyer MI, Proctor-Gregg C, Winn DT (1980) Plant herbivore interactions: examination of potential effects of bison saliva on regrowth of Bouteloua gracilis (H.B.K.) Lag. Oecologia 45:26–31CrossRefPubMedGoogle Scholar
  11. Dunn OJ (1961) Multiple comparisons among means. J Am Stat Assoc 56:52–64CrossRefGoogle Scholar
  12. Easton HS (2007) Grasses and Neotyphodium endophytes: co-adaptation and adaptive breeding. Euphytica 154:295–306CrossRefGoogle Scholar
  13. Easton S, Tapper B (2005) Neotyphodium research and application in New Zealand. In: Roberts CA, West CP, Spiers DE (eds) Neotyphodium in cool-season grasses. Blackwell Publ., Ames, pp 35–42CrossRefGoogle Scholar
  14. Fuchs B, Krischke M, Mueller MJ, Krauss J (2017) Herbivore-specific induction of defence metabolites in a grass-endophyte association. Funct Ecol 31:318–324CrossRefGoogle Scholar
  15. Goldson SL (1982) An examination of the relationship between Argentine stem weevil (Listronotus bonariensis (Kuschel)) and several of its host grasses. New Zeal J Agr Res 25:395–403CrossRefGoogle Scholar
  16. Goldson SL, Tomasetto F, Popay AJ (2014) Biological control against invasive species in simplified ecosystems: its triumphs and emerging threats. Curr Opin Insect Sci 5:50–56CrossRefGoogle Scholar
  17. Grimmett RE, Waters DF (1943) A fluorescent alkaloid in ryegrass (Lolium perenne L.) II. Extract from fresh ryegrass and separation from other bases. N Z J Sci 24:151BGoogle Scholar
  18. Hovin AW, Buckner RC (1983) Alkaloids in tall fescue and reed canary grass. In: Rechcigl M (ed) Handbook of naturally occurring food toxicants. CRC Press, Boca Raton, pp 241–247Google Scholar
  19. IBM CORP (2011) IBM SPSS statistics for windows. Version 21.0. IBM Corp, ArmonkGoogle Scholar
  20. Johnson LJ, Debonth ACM, Brigg LR, Caradu SD, Finch SC, Fleetwood DJ et al (2013) The exploitation of Epichloë endophytes for agricultural benefit. Fungal Divers 60:171–188CrossRefGoogle Scholar
  21. Kauppinen M, Saikkonen K, Helander M, Pirttila AM, Wali PR (2016) Epichloë grass endophytes in sustainable agriculture. Nat Plants 2:1–7Google Scholar
  22. Liu J, Wang L, Wang D, Bonser SP, Sun F, Zhou Y et al (2012) Plants can benefit from herbivory: stimulatory effects of sheep saliva on growth of Leymus chinensis. PLoS ONE 7 (1):e29259.  https://doi.org/10.1371/journal.pone.0029259
  23. Moore JR, Pratley PE, Mace WJ, Weston LA (2015) Variation in alkaloid production from genetically diverse Lolium accessions infected with Epichloë species. J Agric Food Chem 63:10355–10365CrossRefPubMedGoogle Scholar
  24. Pan J, Bhardwaj M, Nagabhyru P, Grossman RB, Schardl CL (2014) Enzymes from fungal and plant origin required for chemical diversification of insecticidal loline alkaloids in grass-Epichloë symbiota. PLoS ONE 9:e115590.  https://doi.org/10.1371/journal.pone.0115590 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Popay AJ, McNeil MR, Goldson SL, Ferguson CM (2011) The current status of Argentine stem weevil (Listronotous bonariensis) as a pest in the North Island in New Zealand. N Z Plant Protect-SE 64:55–63Google Scholar
  26. Ramankuttry N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem Cy 22:GB1003Google Scholar
  27. Reddy PV, Lam CK, Belanger FC (1996) Mutualistic fungal endophytes express a proteinase that is homologous to proteases suspected to be important in fungal pathogenicity. Plant Physiol 111:1209–1218CrossRefPubMedPubMedCentralGoogle Scholar
  28. Rodriguez RJ, White JF Jr, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330CrossRefPubMedGoogle Scholar
  29. Rowan DD, Gaynor DL (1986) Isolation of feeding deterrents against Argentine stem weevil from ryegrass infected with the endophyte Acremonium loliae. J Chem Ecol 12:647–658CrossRefPubMedGoogle Scholar
  30. Rupport KG, Matthew C, McKenzie CM, Popay AJ (2017) Impact of Epichloe endophytes on adult Argentine stem weevil damage to perennial ryegrass seedlings. Entomol Exp Appl 163:328–337CrossRefGoogle Scholar
  31. Saha DC, Jackson MA, Johnson-Cicalese JM (1988) A rapid staining method for detection of endophytic fungi in turf and forage grasses. Phytopathology 78:237–239CrossRefGoogle Scholar
  32. Salminen SO, Richmond DS, Grewal SK, Grewal PS (2005) Influence of temperature on alkaloid levels and fall armyworm performance in endophytic tall fescue and perennial ryegrass. Entomol Exp Appl 115:417–426CrossRefGoogle Scholar
  33. Schardl CL, Florea S, Pan J, Nagabhyru P, Bec S, Calie JC (2013) The epichloae: alkaloid diversity and roles in symbiosis with grass. Curr Opin Plant Biol 16:480–488CrossRefPubMedGoogle Scholar
  34. Simpson WR, Schmid J, Singh J, Faville MJ, Johnson RD (2012) A morphological change in the fungal symbiont Neotyphodium lolii induces dwarfing in its host plant Lolium perenne. Fungal Biol 116:234–240CrossRefPubMedGoogle Scholar
  35. Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, Dehaan C (2006) Livestock’s long shadow: environmental issues and options. FAO LEAD, Rome http://www.virtualcentre.org/en/library/keypub/longshad/a0701e/A0701E00.pd. Accessed 3 January 2017Google Scholar
  36. Strauss SY (2013) Ecological and evolutionary responses in complex communities: implications for invasions and eco-evolutionary feedbacks. Oikos 123:257–266CrossRefGoogle Scholar
  37. Sullivan TJ, Rodstrom J, Vandop J, Librizzi J, Graham L, Schardl CL et al (2006) Symbiont-mediated changes in defensive strategy in the invasive grass Lolium arundinaceum: evidence from changes in gene expression and foliar elemental composition. New Phytol 176:673–679CrossRefGoogle Scholar
  38. Tanentzap A, Vicari M, Bazely D (2014) Ungulate saliva inhibits a grass-endophyte mutualism. Biol Lett 10:20140460.  https://doi.org/10.1098/rsbl.2014.0460 CrossRefPubMedPubMedCentralGoogle Scholar
  39. White JF Jr, Torres MS (2010) Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Plant Physiol 138:440–446CrossRefGoogle Scholar
  40. Yue Q, Miller CJ, White JF Jr, Richardson MD (2000) Isolation and characterization of fungal inhibitors from Epichloë festucae. J Agric Food Chem 48:4687–4692CrossRefPubMedGoogle Scholar
  41. Zhang D-X, Nagabhyru P, Schardl CL (2009) Regulation of a chemical defense against herbivory produced by symbiotic fungi in grass plants. Plant Physiol 150:1072–1082CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Thomas L. Bultman
    • 1
    Email author
  • Mark R. McNeill
    • 2
  • Kelly Krueger
    • 1
  • Gina De Nicolo
    • 2
  • Alison J. Popay
    • 3
  • David E. Hume
    • 4
  • Wade J. Mace
    • 3
  • Lester R. Fletcher
    • 5
  • Yew Meng Koh
    • 6
  • Terrence J. Sullivan
    • 7
  1. 1.Biology DepartmentHope CollegeHollandUSA
  2. 2.AgResearch, Canterbury Agric. Sci. CentreCanterburyNew Zealand
  3. 3.AgResearch – Ruakura Research CentreHamiltonNew Zealand
  4. 4.AgResearch, Grasslands Research CentrePalmerston NorthNew Zealand
  5. 5.PrebbletonNew Zealand
  6. 6.Mathematics DepartmentHope CollegeHollandUSA
  7. 7.School of SciencesIndiana University KokomoKokomoUSA

Personalised recommendations