Skip to main content
Log in

Biocommunication between Plants and Pollinating Insects through Fluorescence of Pollen and Anthers

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Flowering plants attract pollinators via various stimuli such as odor, color, and shape. Factors determining the foraging behavior of pollinators remain a major theme in ecological and evolutionary research, although the floral traits and cognitive ability of pollinators have been investigated for centuries. Here we show that the autofluorescence emitted from pollen and anthers under UV irradiation may act as another attractant for flower-visiting insects. We have identified fluorescent compounds from pollen and anthers of five plant species as hydroxycinnamoyl derivatives. The fluorescent compounds are also shown to quench UV energy and exhibit antioxidant activity, indicating a function as protectants of pollen genes from UV-induced damage. A two-choice assay using honeybees in the field demonstrated that they perceived the blue fluorescence emitted from the fluorescent compounds and were attracted to it. This result suggested that the fluorescence from pollen and anthers serves as a visual cue to attract pollinators under sunlight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Birkofer L, Kaiser C, Nouvertné W, Thomas U (1961) Natürlich vorkommende Zuckerester von Phenolcarbonsäuren. Z Naturforsch B 16:249–251

    Article  Google Scholar 

  • Birkofer L, Kaiser C, Thoman U (1968) Acteosid und Neoacteosid: Zuckerester aus Syringa vulgaris (L.). Z Naturforsch B 23:1051–1058

    Article  PubMed  CAS  Google Scholar 

  • Bokern M, Wray V, Strack D (1987) Hydroxycinnamic acid esters of glucuronosylglucose from cell suspension cultures of Chenopodium rubrum. Phytochemistry 26:3229–3231

    Article  CAS  Google Scholar 

  • Cheminat A, Zawatzky R, Becker H, Brouillard R (1988) Caffeoyl conjugates from Echinacea species: structures and biological activity. Phytochemisitry 27:2787–2794

    Article  CAS  Google Scholar 

  • Dafni A, Lehrer M, Kevan PG (1997) Spatial flower parameters and insect spatial vision. Biol Rev 72:239–282

    Article  Google Scholar 

  • Dötterl S, Vereecken N (2010) The chemical ecology and evolution of bee-flower interactions: a review and perspectives. Can J Zool 88:668–697

    Article  Google Scholar 

  • Dyer AG, Neumeyer C (2005) Simultaneous and successive colour discrimination in the honeybee (Apis mellifera). J Comp Physiol A 191:547–557

    Article  Google Scholar 

  • Dyer AG, Boyd-Gerny S, Shrestha M, Lunau K, Garcia JE, Koethe S, Wong BBM (2016) Innate colour preferences of the Australian native stingless bee Tetragonula carbonaria Sm. J Comp Physiol A 202:603–613

    Article  Google Scholar 

  • Fischer HOL, Dangschat G (1932) Konstitution der Chlorogensäure (3. Mitteil. über Chinasäure und Derivate). Ber Dtsch Chem Ges 65:1037–1040

    Article  Google Scholar 

  • Fukui H, Hirai N, Mori S, Goto K, Toyoda J, Tsukioka J (2017) Floral fluorescence database. The Garden of Medicinal Plans, Kyoto Pharmaceutical University. http://labo.kyoto-phu.ac.jp/mpgkpu/ffd.html. Accessed 7 Sep 2017

  • Gandía-Herrero F, García-Carmona F, Escribano J (2005a) Floral fluorescence effect. Nature 437:334

    Article  PubMed  CAS  Google Scholar 

  • Gandía-Herrero F, Escribano J, García-Carmona F (2005b) Betaxanthins as pigments responsible for visible fluorescence in flowers. Planta 222:586–593

    Article  PubMed  CAS  Google Scholar 

  • García-Plazaola JI, Fernández-Marín B, Duke SO, Hernández A, López-Arbeloa F, Becerrila JM (2015) Autofluorescence: biological functions and technical applications. Plant Sci 236:136–145

    Article  PubMed  CAS  Google Scholar 

  • Giurfa M, Nunez J, Chittka L, Menzel R (1995) Colour preferences of flower-naive honeybees. J Comp Physiol A 177:247–259

    Article  Google Scholar 

  • Giurfa M, Vorobyev M, Kevan P, Menzel R (1996) Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts. J Comp Physiol A 178:699–709

    Article  Google Scholar 

  • Gumbert A (2000) Color choices by bumble bees (Bumbus terrestris): innate preferences and generalization after learning. Behav Ecol Sociobiol 48:36–43

    Article  Google Scholar 

  • Hamerski L, Bomm MD, Silva DHS, Young MCM, Furlan M, Eberlin MN, Castro-Gamboa I, Cavalheiro AJ, Bolzani VS (2005) Phenylpropanoid glucosides from leaves of Coussarea hydrangeifolia (Rubiaceae). Phytochemistry 66:1927–1932

    Article  PubMed  CAS  Google Scholar 

  • Hempel de Ibarra N, Vorobyev M, Menzel R (2014) Mechanisms, functions and ecology of colour vision in the honeybee. J Comp Physiol A 200:411–433

    Article  CAS  Google Scholar 

  • Hixson JL, Hayasaka Y, Curtin CD, Sefton MA, Taylor DK (2016) Hydroxycinnamoyl glucose and tartrate esters and their role in the formation of ethylphenols in wine. J Agric Food Chem 64:9401–9411

    Article  PubMed  CAS  Google Scholar 

  • Hoque E, Remus G (1999) Natural UV-screening mechanisms of Norway spruce (Picea abies [L.] Karst.) needles. Photochem Photobiol 69:177–192

    PubMed  CAS  Google Scholar 

  • Hung CY, Tsai YC, Li KY (2012) Phenolic antioxidants isolated from the flowers of Osmanthus fragrans. Molecules 17:10724–10737

    Article  PubMed  CAS  Google Scholar 

  • Iriel A, Lagorio MG (2010) Is the flower fluorescence relevant in biocommunication? Naturwissenschaften 97:915–924

    Article  PubMed  CAS  Google Scholar 

  • Kevan PG (1976) Fluorescent nectar. Science 194:341–342

    Article  PubMed  CAS  Google Scholar 

  • Kurup R, Johnson AJ, Sankar S, Hussain AA, Kumar CS, Sabulal B (2013) Fluorescent prey traps in carnivorous plants. Plant Biol 15:611–615

    Article  PubMed  CAS  Google Scholar 

  • Kweon MH, Hwang HJ, Sung HC (2001) Identification and antioxidant activity of novel chlorogenic acid derivatives from bamboo (Phyllostachys edulis). J Agric Food Chem 49:4646–4655

    Article  PubMed  CAS  Google Scholar 

  • Lagorio MG, Cordon GB, Iriel A (2015) Reviewing the relevance of fluorescence in biological systems. Photochem Photobiol Sci 14:1538–1559

    Article  PubMed  CAS  Google Scholar 

  • Lunau K (2000) The ecology and evolution of visual pollen signals. Plant Syst Evol 222:89–111

    Article  Google Scholar 

  • Mayer C, Adler L, Armbruster WS, Dafni A, Eardley C, Huang S, Kevan PG, Ollerton J, Packer L, Ssymank A, Stout JC, Potts SG (2011) Pollination ecology in the 21st century: key questions for future research. J Pollination Ecol 3:8–23

    Google Scholar 

  • Nishimura H, Sasaki H, Inagaki N, Chin M, Mitsuhashi H (1991) Nine phenethyl alcohol glycosides from Stachys sieboldii. Phytochemistry 30:965–969

    Article  PubMed  CAS  Google Scholar 

  • Park KH, Park M, Choi SE, Jeong MS, Kwon JH, Oh MH, Choi HK, Seo SJ, Lee MW (2009) The anti-oxidative and anti-inflammatory effects of caffeoyl derivatives from the roots of Aconitum koreanum R. RAYMOND. Biol Pharm Bull 32:2029–2033

    Article  PubMed  CAS  Google Scholar 

  • Parker CA, Rees WT (1962) Fluorescence spectrometry. A review. Analyst 87:83–111

    Article  CAS  Google Scholar 

  • Peitsch D, Fietz A, Hertel H, de Souza J, Ventura DF, Menzel R (1992) The spectral input systems of hymenopteran insects and their receptor-based colour vision. J Comp Physiol A 170:23–40

    Article  PubMed  CAS  Google Scholar 

  • Potts SG, Imperatriz-Fonseca V, Ngo HT, Aizen MA, Biesmeijer JC, Breeze TD, Dicks LV, Garibaldi LA, Hill R, Settele J, Vanbergen AJ (2016) Safeguarding pollinators and their values to human well-being. Nature 540:220–229

    Article  PubMed  CAS  Google Scholar 

  • Quilichini TD, Grienenberger E, Douglas CJ (2015) The biosynthesis, composition and assembly of the outer pollen wall: a tough case to crack. Phytochemistry 113:170–182

    Article  PubMed  CAS  Google Scholar 

  • Roschina VV (2012) Vital autofluorescence: application to the study of plant living cells. Int J Spectrosc 124672

  • Rozema J, Broekmana RA, Blokkerb P, Meijkampa BB, de Bakkera N, van de Staaij J, van Beem A, Ariese F, Kars SM (2001) UV-B absorbance and UV-B absorbing compounds (para-coumaric acid) in pollen and sporopollenin: the perspective to track historic UV-B levels. J Photochem Photobiol B Biol 62:108–117

    Article  CAS  Google Scholar 

  • Sakuma M, Fukami H (1985) The linear track olfactometer: an assay device for taxes of the German cockroach, Blattella germanica (L.) (Dictyoptera: Blattellidae) towards their aggregation pheromone. Appl Entomol Zool 20:387–402

    Article  Google Scholar 

  • Scarpati ML, Guiso M (1964) Structure of the three dicaffeoyl-quinic acids of coffee (isochlorogenic acid). Tetrahedron Lett 5:2851–2853

    Article  Google Scholar 

  • Seeley TD (1995) The wisdom of the hive: the social physiology of honey bee colonies. Harvard University Press, Cambridge

    Google Scholar 

  • Thorp RW, Briggs DL, Estes JR, Erickson EH (1975) Nectar fluorescence under ultraviolet irradiation. Science 189:476–478

    Article  PubMed  CAS  Google Scholar 

  • Vanbergen AJ, The Insect Pollination Initiative (2013) Threats to an ecosystem service: pressures on pollinators. Front Ecol Environ 11:251–259

    Article  Google Scholar 

  • von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, Cambridge

    Google Scholar 

  • Wald B, Wray V, Galensa R, Herrmann K (1989) Malonated flavonol glycosides and 3,5-dicaffeoylquinic acid from pears. Phytochemistry 28:663–664

    Article  CAS  Google Scholar 

  • Williamson CG, Zepp RG, Lucas RM, Madronich S, Austin AT, Ballaré CL, Norval M, Sulzberger B, Bais AF, McKenzie RL, Robinson SA, Häder DP, Paul ND, Bornman JF (2014) Solar ultraviolet radiation in a changing climate. Nat Clim Chang 4:434–441

    Article  Google Scholar 

Download references

Acknowledgements

We thank Mr. M. Kaneko (Nagano Vegetable and Ornamental Crops Experiment Station) for providing flowers of P. persica. We wish to acknowledge Assistant Professor M. Murai and Mr. K. Nishino, and Assistant Professor T. Suzuki (Graduate School of Agriculture, Kyoto University) for the mass spectral measurements and the UV/Vis measurements, respectively. For the two-photon excitation microscopy, we thank Ms. K. Takakura at the Fluorescent Live Imaging Core Facility of the Medical Research Support Center, Graduate School of Medicine, Kyoto University, which was supported by Platform for Drug Discovery, Informatics, and Structural Life Science from the Ministry of Education, Culture, Sports, Science and Technology, Japan. We also wish to thank Ms. K. Okamoto-Furuta and Mr. H. Kohda (Center for Anatomical, Pathological and Forensic Medical Researches, Graduate School of Medicine, Kyoto University) for their technical assistance with electron microscopy. Advice and comments given by Associate Professor T. Miyake (Graduate School of Agriculture, Kyoto University) were a great help in the statistical analysis. We are deeply grateful to Professor K. Arikawa (School of Advanced Sciences, Graduate University for Advanced Studies) and Professor Emeritus M. Sasaki (Tamagawa University) for valuable discussion on the behavioral experiments with honeybees. We would like to express our sincere gratitude to Ms. Y. Fukui for warm encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinnosuke Mori.

Additional information

Hiroshi Fukui and Katsumi Goto died before publication of this work was completed.

Electronic supplementary material

ESM 1

(DOCX 4439 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mori, S., Fukui, H., Oishi, M. et al. Biocommunication between Plants and Pollinating Insects through Fluorescence of Pollen and Anthers. J Chem Ecol 44, 591–600 (2018). https://doi.org/10.1007/s10886-018-0958-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-018-0958-9

Keywords

Navigation