Advertisement

Journal of Chemical Ecology

, Volume 44, Issue 2, pp 147–177 | Cite as

Chemical Ecology of Chemosensation in Asteroidea: Insights Towards Management Strategies of Pest Species

  • Cherie A. MottiEmail author
  • Utpal Bose
  • Rebecca E. Roberts
  • Carmel McDougall
  • Meaghan K. Smith
  • Michael R. Hall
  • Scott F. Cummins
Review Article

Abstract

Within the Phylum Echinodermata, the class Asteroidea, commonly known as starfish and sea stars, encompasses a large number of benthos inhabiting genera and species with various feeding modalities including herbivores, carnivores, omnivores and detritivores. The Asteroidea rely on chemosensation throughout their life histories including hunting prey, avoiding or deterring predators, in the formation of spawning aggregations, synchronizing gamete release and targeting appropriate locations for larval settlement. The identities of many of the chemical stimuli that mediate these physiological and behavioural processes remain unresolved even though evidence indicates they play pivotal roles in the functionality of benthic communities. Aspects of chemosensation, as well as putative chemically-mediated behaviours and the molecular mechanisms of chemoreception, within the Asteroidea are reviewed here, with particular reference to the coral reef pest the Crown-of-Thorns starfish Acanthaster planci species complex, in the context of mitigation of population outbreaks.

Keywords

Asteroid Semiochemical Kairomone Allomone Hormone Chemosensation Chemoreceptors, chemoreception Crown-of-Thorns starfish 

Notes

Acknowledgements

This paper was supported by the Australian Federal Government Department of the Environment Reef Rescue ‘Caring for Country’ program for funding the ‘The Crown-of-Thorns secretome: Towards a control technology’ project.

References

  1. Alam M, Sanduja R, Wellington GM (1988) Tubastraine: Isolation and structure of a novel alkaloid from the stony coral Tubastraea micrantha. Heterocycles 27:719–723CrossRefGoogle Scholar
  2. Allen P (1983) Feeding behaviour of Asterias rubens (L.) on soft bottom bivalves: a study in selective predation. J Exp Mar Biol Ecol 70:79–90CrossRefGoogle Scholar
  3. Amsler CD, Iken K, McClintock JB, Amsler MO, Peters KJ, Hubbard JM et al (2005) Comprehensive evaluation of the palatability and chemical defenses of subtidal macroalgae from the Antarctic Peninsula. Mar Ecol Prog Ser 294:141–159CrossRefGoogle Scholar
  4. Anderson JM (1954) Studies on the cardiac stomach of the starfish, Asterias forbesi. Biol Bull 107:157–173CrossRefGoogle Scholar
  5. Anger K, Rogal U, Schriever G, Valentin C (1977) In-situ investigations on the echinoderm Asterias rubens as a predator of soft-bottom communities in the western Baltic Sea. Helgolander wiss Meeresunters 29:439–459CrossRefGoogle Scholar
  6. Ankisetty S, Nandiraju S, Win H, Park YC, Amsler CD, McClintock JB et al (2004) Chemical investigation of predator-deterred macroalgae from the Antarctic Peninsula. J Nat Prod 67(8):1295–1302PubMedCrossRefGoogle Scholar
  7. Araki GS (1964) Physiology of feeding and digestion in the sea star Patiria miniata. Ph.D. dissertation, Stanford UniversityGoogle Scholar
  8. Atema J (1995) Chemical signals in the marine environment: Dispersal, detection, and temporal signal analysis. Proc Natl Acad Sci U S A 92:62–66PubMedPubMedCentralCrossRefGoogle Scholar
  9. Atema J, Brönmark C, Hansson LA (2012) Aquatic odor dispersal fields: opportunities and limits of detection, communication and navigation. In: Brönmark C, Hansson LA (eds) Chemical Ecology in Aquatic Systems. Oxford University Press, Oxford, pp 1–18Google Scholar
  10. Australian Government (1999) National Control plan for the introduced marine pest Northern Pacific Seastar (Asterias amurensis). In: Joint Standing Committee on Conservation/Standing Committee on Fisheries and Aquaculture National Taskforce on the Prevention and Management of Marine Pest Incursions Final Report. Australian Government, Canberra, pp 1–34Google Scholar
  11. Babcock RC, Mundy CN (1992) Reproductive biology, spawning and field fertilization rates of Acanthaster planci. Mar Freshwat Res 43:525–534CrossRefGoogle Scholar
  12. Baker BJ, Barlow TL, McClintock JB (1997). Evaluation of the functional role of suberitenones A and B from the sponge Suberites sp. found in McMurdo Sound. Antarctica. Antarct J US.: 3290–3291Google Scholar
  13. Barker MF (1977) Observations on the settlement of the brachiolaria larvae of Stichaster australis (Verrill) and Coscinasterias calamaria (Gray) (Echinodermata: Asteroidea) in the laboratory and on the shore. J Exp Mar Biol Ecol 30:95–108CrossRefGoogle Scholar
  14. Barnes DJ, Brauer RW, Jordan MR (1970) Field and laboratory observations of the Crown-of-Thorns Starfish, Acanthaster planci: Locomotory response of Acanthaster planci to various species of coral. Nat Aust 228:342–344CrossRefGoogle Scholar
  15. Barnett D, Dean P, Hart R, Lucas J, Salathe R, Howden M (1988) Determination of contents of steroidal saponins in starfish tissues and study of their biosynthesis. Comp Biochem Physiol B: Biochem Mol Biol 90:141–145CrossRefGoogle Scholar
  16. Beach DH, Hanscomb NJ, Ormond RFG (1975) Spawning pheromone in crown-of-thorns starfish. Nature 254:135–136PubMedCrossRefGoogle Scholar
  17. Beddingfield SD, McCiintock JB (1993) Feeding behavior of the sea star Astropecten articulatus (Echinodermata: Asteroidea): an evaluation of energy-efficient foraging in a soft-bottom predator. Mar Biol Res 115:669–676CrossRefGoogle Scholar
  18. Beer S, Wentzel C, Petie R, Garm A (2016) Active control of the visual field in the starfish Acanthaster planci. Vis Res 127:28–34PubMedCrossRefGoogle Scholar
  19. Bernstein B, Schroeter S, Mann K (1983) Sea urchin (Strongylocentrotus droebachiensis) aggregating behavior investigated by a subtidal multifactorial experiment. Can J Fish Aquat Sci 40(11):1975–1986CrossRefGoogle Scholar
  20. Birkeland C, Lucas J (1990) Acanthaster planci: major management problems of coral reefs. Boca Raton, CRC PressGoogle Scholar
  21. Birkeland C, Chia F-S, Strathmann RR (1971) Development, substratum selection, delay of metamorphosis and growth in the seastar, Mediaster aequalis stimpson. Biol Bull 141:99–108CrossRefGoogle Scholar
  22. Blake DB (1987) A classification and phylogeny of post-Palaeozoic sea stars (Asteroidea: Echinodermata). J Nat His 21(2):481–528CrossRefGoogle Scholar
  23. Blake DB (1989) Asteroidea: Functional morphology, classification and phylogeny. In: Jangoux M, Lawrence J (eds) Echinoderm studies, Vol. 3. Balkema, Rotterdam, pp 179–223Google Scholar
  24. Bohmer M, Van Q, Weyand I, Hagen V, Beyermann M, Matsumoto M et al (2005) Ca2+ spikes in the flagellum control chemotactic behavior of sperm. EMBO 24:2741–2752CrossRefGoogle Scholar
  25. Bos AR, Gumanao GS, Mueller B, Saceda-Cardoza MM (2013) Management of crown-of-thorns sea star (Acanthaster planci L.) outbreaks: removal success depends on reef topography and timing within the reproduction cycle. Ocean Coast Manag 71:116–122CrossRefGoogle Scholar
  26. Bose U, Suwansa-ard S, Maikaeo L, Motti CA, Hall MR, Cummins SF (2017) Neuropeptides encoded within a neural transcriptome of the giant triton snail Charonia tritonis, a Crown-of-Thorns Starfish predator. Peptides 98:3–14.  https://doi.org/10.1016/j.peptides.2017.01.004
  27. Brauer RW, Jordan MJ, Barnes DJ (1970) Triggering of the stomach eversion reflex of Acanthaster planci by coral extracts. Nature 228:344–346PubMedCrossRefGoogle Scholar
  28. Brewer R, Konar B (2005) Chemosensory responses and foraging behavior of the seastar Pycnopodia helianthoides. Mar Biol 147:789–795CrossRefGoogle Scholar
  29. Brönmark C, Hansson L-A (2012) Chemical ecology in aquatic systems. Oxford, Oxford University PressCrossRefGoogle Scholar
  30. Brun E (1968) Extreme population density of the starfish Asterias rubens on a bed of Iceland scallops, Chlamys Islandica (O.F. Miller). Astarte 32:1–3Google Scholar
  31. Bryan PJ (2004) Energetic cost of development through metamorphosis for the seastar Mediaster aequalis (Stimpson). Mar Biol 145:293–302CrossRefGoogle Scholar
  32. Bryan PJ, Rittschof D, McClintock JB (1996) Bioactivity of echinoderm ethanolic body-wall extracts: an assessment of marine bacterial attachment and macroinvertebrate larval settlement. J Exp Mar Biol Ecol 196:79–96CrossRefGoogle Scholar
  33. Burke RD (1986) Pheromones and the gregarious settlement of marine invertebrate larvae. Bull Mar Sci 39(2):323–331Google Scholar
  34. Buskirk JV, Krügel A, Kunz J, Miss F, Stamm A (2014) The rate of degradation of chemical cues indicating predation risk: An experiment and review. Ethology 120:942–949CrossRefGoogle Scholar
  35. Caballes CF, Pratchett MS (2014) Reproductive biology and early life history of the crown-of-thorns starfish. New York, Nova Science PublishersGoogle Scholar
  36. Caballes CF, Pratchett MS (2017) Environmental and biological cues for spawning in the crown-of-thorns starfish. PLoS One 12:e0173964PubMedPubMedCentralCrossRefGoogle Scholar
  37. Campbell AC (1974) Observations on the activity of echinoid pedicellariae II. Jaw responses of tridentate and ophiocephalous pedicellariae. Mar Freshwat Behav Physiol 3(1):17–34CrossRefGoogle Scholar
  38. Campbell A (1976) Observations on the activity of echinoid pedicellariae. III. Jaw responses of globiferous pedicellariae and their significance. Mar Freshwat Behav Physiol 4(1):25–39CrossRefGoogle Scholar
  39. Campbell AC, Coppard S, D’Abreo C, Tudor-Thomas R (2001) Escape and aggregation responses of three echinoderms to conspecific stimuli. Biol Bull 201:175–185PubMedCrossRefGoogle Scholar
  40. Carter GS (1932) Iodine compounds and fertilisation IX. Fertilisation in the starfish, Asterias rubens L. J Exp Biol 9:378–388Google Scholar
  41. Castilla JC (1972a) Avoidance behaviour of Asterias rubens to extracts of Mytilus edulis, solutions of bacteriological peptone, and selected amino acids. Mar Biol 15:236–245CrossRefGoogle Scholar
  42. Castilla JC (1972b) Responses of Asterias rubens to bivalve prey in a Y-maze. Mar Biol Res 12:222–228CrossRefGoogle Scholar
  43. Castilla JC, Crisp DJ (1970) Responses of Asterias rubens to olfactory stimuli. J Mar Biol Assoc UK 50:829–847CrossRefGoogle Scholar
  44. Castilla JC, Crisp DJ (1973) Responses of Asterias rubens to water currents and their modification by certain environmental factors. Neth J Sea Res 7:171–190CrossRefGoogle Scholar
  45. Chaet AB (1962) A toxin in the coelomic fluid of scalded starfish (Asterias forbesi). Exp Biol Med 109:791–794CrossRefGoogle Scholar
  46. Clements CS, Hay ME (2015) Competitors as accomplices: seaweed competitors hide corals from predatory sea stars. Proc Royal Soc B: Bio Sci 282:20150714CrossRefGoogle Scholar
  47. Clements C, Hay M (2017) Size matters: Predator outbreaks threaten foundation species in small Marine Protected Areas. PLoS One 12:e0171569PubMedPubMedCentralCrossRefGoogle Scholar
  48. Collins ARS (1975) Biochemical investigation of two responses involved in the feeding behaviour of Acanthaster planci (L.). III. Food preferences. J Exp Mar Biol Ecol 17:87–94CrossRefGoogle Scholar
  49. Cowan Z-L, Dworjanyn SA, Caballes CF, Pratchett M (2016) Benthic predators influence microhabitat preferences and settlement success of Crown-of-Thorns Starfish (Acanthaster cf. solaris). Diversity 8:27–37CrossRefGoogle Scholar
  50. Dale J (1997) Chemosensory search behavior in the starfish Asterias forbesi. Biol Bull 193:210–212PubMedCrossRefGoogle Scholar
  51. Dale J (1999) Coordination of chemosensory orientation in the starfish Asterias forbesi. Mar Freshwat Behav Physiol 32(1):57–71CrossRefGoogle Scholar
  52. Dare PJ (1982) Notes on the swarming behaviour and population density of Asterias rubens L. (Echinodermata: Asteroidea) feeding on the mussel, Mytilus edulis L. ICES J Mar Sci 40:112–118CrossRefGoogle Scholar
  53. Davidson B, Jacobs M, Swalla B (2002) The individual as a module: metazoan evolution and coloniality. In: Schlosser G, Wagner GP (eds) Modularity in development and evolution. University of Chicago Press, Chicago, USA, pp 443–465Google Scholar
  54. De Dios HHY, Dy DT, Sotto FB (2014) Abundance and size structure of an Acanthaster planci population (Echinodermata: Asteroidea) in Sogod Bay, Southern Leyte, Philippines. Asia Life Sci 23:65–73Google Scholar
  55. Dean JM, Lodhi IJ (2017) Structural and functional roles of ether lipids. Protein Cell.  https://doi.org/10.1007/s13238-017-0423-5
  56. De'ath G, Moran PJ (1998) Factors affecting the behaviour of crown-of-thorns starfish (Acanthaster planci L.) on the Great Barrier Reef: 2: Feeding preferences. J Exp Mar Biol Ecol 220:107–126CrossRefGoogle Scholar
  57. De'ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27-years decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci U S A 109(44):17995–17999PubMedPubMedCentralCrossRefGoogle Scholar
  58. Deletre E, Schatz B, Bourguet D, Chandre F, Williams L, Ratnadass A et al (2016) Prospects for repellent in pest control: current developments and future challenges. Chemoecology 26:127–142CrossRefGoogle Scholar
  59. Demeyer M, DeWinter J, Caulier G, Eeckhaut I, Flammang P, Gerbaux P (2014) Molecular diversity and body distribution of saponins in the sea star Asterias rubens by mass spectrometry. Comp Biochem Physiol B: Biochem Mol Biol 168:1–11CrossRefGoogle Scholar
  60. Demeyer M, Wisztorski M, Decroo C, Winter JD, Caulier G, Hennebert E et al (2015) Inter- and intra-organ spatial distributions of sea star saponins by MALDI imaging. Anal Bioanal Chem 407:8813–8824PubMedCrossRefGoogle Scholar
  61. Derby CD, Zimmer RK (2012) Neuroecology of predator–prey interactions. In: Brönmark C, Hansson L (eds) Chemical Ecology in Aquatic Systems. Oxford University Press, Oxford, pp 158–171CrossRefGoogle Scholar
  62. Doering PH (1982) Reduction of attractiveness of the sea star Asterias forbesi (Desor) by the clam Mercenaria mercenaria (Linnaeus). J Exp Mar Biol Ecol 60:47–61CrossRefGoogle Scholar
  63. Dommisse M, Hough D (2004) Controlling the Northern Pacific seastar (Asterias amurensis) in Australia, The Australian Government Department of the Environment and Heritage. Department of Sustainability and Environment, Victoria, Australia, pp 1–52Google Scholar
  64. Dong G, Xu T, Yang B, Lin X, Zhou X, Yang X et al (2011) Chemical constituents and bioactivities of starfish. Chem Biodivers 8:740–791PubMedCrossRefGoogle Scholar
  65. Elliott JK, Ross DM, Pathirana C, Miao S, Andersen RJ, Singer P et al (1989) Induction of swimming in Stomphia (Anthozoa: Actiniaria) by imbricatine, a metabolite of the asteroid Dermasterias imbricata. Biol Bull 176:73–78CrossRefGoogle Scholar
  66. Elphick MR, Melarange R (1998) Nitric oxide function in an echinoderm. Biol Bull 194:260–266PubMedCrossRefGoogle Scholar
  67. EMPplan (2015) Rapid response manual Asterias amurensis. In: Department of Agriculture and Water Resources Australian Government (ed) The Australian Emergency Marine Pest Plan (EMPPlan). Commonwealth of Australia, Canberra, pp 1–55Google Scholar
  68. Fange R (1963) Toxic factors in starfishes. Sarsia 10:19–21CrossRefGoogle Scholar
  69. Ferrari MCO, Wisenden BD, Chivers DP (2010) Chemical Ecology of predator-prey interactions in aquatic ecosystems: a review and prospectus. Can J Zool 88:698–724CrossRefGoogle Scholar
  70. Figuerola B, Núñez-Pons L, Vázquez J, Taboada S, Cristobo J, Ballesteros M et al (2012) Chemical interactions in Antarctic marine benthic ecosystems. Croatia, InTechCrossRefGoogle Scholar
  71. Fishlyn DA, Phillips DW (1980) Chemical camouflaging and behavioral defenses against a predatory seastar by three species of gastropods from the surfgrass Phyllospadix community. Biol Bull 158:34–48CrossRefGoogle Scholar
  72. Fujimoto Y, Yamada T, Ikekawa N, Nishiyama I, Matsui T, Hoshi M (1987) Structure of acrosome reaction-inducing steroidal saponins from the egg jelly of the starfish, Asterias amurensis. Chem Pharm Bull (Tokyo) 35:1829–1832CrossRefGoogle Scholar
  73. Furrow FB, Amsler CD, McClintock JB, Baker BJ (2003) Surface sequestration of chemical feeding deterrents in the Antarctic sponge Latrunculia apicalis as an optimal defense against sea star spongivory. Mar Biol 143:443–449CrossRefGoogle Scholar
  74. Gallagher T, Richardson CA, Seed R, Jones T (2008) The seasonal movement and abundance of the starfish, Asterias rubens in relation to mussel farming practice: A case study from the Menai Strait, UK. J Shellfish Res 27:1209–1215CrossRefGoogle Scholar
  75. Garneau F-X, Harvey C, Simard J-L, Apsimon JW, Burnell DJ, Himmelman JH (1989) The distribution of asterosaponins in various body components of the starfish Leptasterias polaris. Comp Biochem Physiol B: Biochem Mol Biol 92:411–416CrossRefGoogle Scholar
  76. GBRMPA (2014) Crown-of-thorns starfish control guidelines, Great Barrier Reef Marine Park Authority (ed). GBRMPA, TownsvilleGoogle Scholar
  77. Glynn PW (1976) Some physical and biological determinants of coral community structure in the eastern Pacific. Ecol Monogr 46(4):431–456CrossRefGoogle Scholar
  78. Glynn PW (1984) An amphinomid worm predator of the crown-of-thorns sea star and general predation on asteroids in eastern and western Pacific coral reefs. Bull Mar Sci 35:54–71Google Scholar
  79. Guenther J, Wright AD, Burns K, Nys R (2009) Chemical antifouling defences of sea stars: effects of the natural products hexadecanoic acid, cholesterol, lathosterol and sitosterol. Mar Ecol Prog Ser 385:137–149CrossRefGoogle Scholar
  80. Hadfield MG (2011) Biofilms and marine invertebrate larvae: What bacteria produce that larvae use to choose settlement sites. Annu Rev Mar Sci 3:453–470CrossRefGoogle Scholar
  81. Hagen NT, Andersen A, Stabell OB (2002) Alarm responses of the green sea urchin, Strongylocentrotus droebachiensis, induced by chemically labelled durophagous predators and simulated acts of predation. Mar Biol 140:365–374CrossRefGoogle Scholar
  82. Hall MR, Bose U, Cummins SF, Motti CA, Wang T, Zhao M et al (2016) The Crown-of-Thorns secretome: towards a control technology, Australian Government Department of the Environment (ed), p 312. Australian Institute of Marine Science, TownsvilleGoogle Scholar
  83. Hall MR, Kocot KM, Baughman KW, Fernandez-Valverde SL, Gauthier MEA, Hatleberg WL et al (2017) The crown-of-thorns starfish genome as a tool for control of a coral reef pest. Nature 544:231–234PubMedGoogle Scholar
  84. Hamel J-F, Mercier A (1995) Prespawning behavior, spawning, and development of the brooding starfish Leptasterias polaris. Biol Bull 188:32–45PubMedCrossRefGoogle Scholar
  85. Hanscomb N, Bennett J, Harper G (1976) Biochemical stimuli for feeding in Acanthaster planci (L.) J Exp Mar Biol Ecol 22(2):193–197CrossRefGoogle Scholar
  86. Harrewijn P, Oosten AM, Piron PG (2000) Natural Terpenoids as Messengers: A multidisciplinary study of their production, biological functions and practical applications. Springer Science & Business Media, BerlinCrossRefGoogle Scholar
  87. Hartmann-Schröder G (1981) Hololepidella alba n. sp.(Polynoidae: Polychaeta), a commensal with the crown-of-thorns starfish from Mactan, Cebu. Philippine Sci 18:10–14Google Scholar
  88. Hashimoto Y, Yasumoto T (1960) Confirmation of saponin as a toxic principle of starfish. Bull Jap Soc Sci Fish 26:1132–1138CrossRefGoogle Scholar
  89. Haszprunar G, Vogler C, Wörheide G (2017) Persistent gaps of knowledge for naming and distinguishing multiple species of Crown-of-Thorns-Seastar in the Acanthaster planci species complex. Diversity 9(2):22CrossRefGoogle Scholar
  90. He X, Su J, Zeng L, Yang R (2001) A new glycoside, cervicoside, from the soft coral Sinularia cervicornis Tix-Dur. Chem Journal Chinese Universities 23(8):1536–1538Google Scholar
  91. Heeb MA (1973) Large molecules and chemical control of feeding behavior in the starfish Asterias forbesi. Helgolander wiss. Meeresunters 24:425–435CrossRefGoogle Scholar
  92. Henderson J, Lucas JS (1971) Larval development and metamorphosis of Acanthaster planci (Asteroidea). Nature 232:655–657PubMedCrossRefGoogle Scholar
  93. Himmelman JH, Dumont CP, Gaymer CF, Vallières C, Drolet D (2008) Spawning synchrony and aggregative behaviour of cold-water echinoderms during multi-species mass spawnings. Mar Ecol Prog Ser 361:161–168CrossRefGoogle Scholar
  94. Hoshi M, Moriyama H, Matsumoto M (2012) Structure of acrosome reaction-inducing substance in the jelly coat of starfish eggs: A mini review. Biochem Biophys Res Commun 425:595–598PubMedCrossRefGoogle Scholar
  95. Houk P, Benavente D, Iguel J, Johnson S, Okano R (2014) Coral reef disturbance and recovery dynamics differ across gradients of localized stressors in the Mariana Islands. PLoS One 9(8):e105731PubMedPubMedCentralCrossRefGoogle Scholar
  96. Huggett MJ, Williamson JE, de Nys R, Kjelleberg S, Steinberg PD (2006) Larval settlement of the common Australian sea urchin Heliocidaris erythrogramma in response to bacteria from the surface of coralline algae. Oecologia 149(4):604–619PubMedCrossRefGoogle Scholar
  97. Huxley CJ (1976) Response of Acanthaster planci (L.) to partial stimuli. J Exp Mar Biol Ecol 22:199–206CrossRefGoogle Scholar
  98. Ibrahim F, Widhyastuti N, Savitri IKE, Sahlan M, Wijanarko A (2013) Antibacterial investigated of phospholipase A2 from the spines venom of crown of thorns starfish Acanthaster planci. Internat J Pharma Bio Sci 4:1–5Google Scholar
  99. Ikegami S (1976) Role of asterosaponin A in starfish spawning induced by gonad-stimulating substance and 1-methyladenine. J Exp Zool 198:359–366CrossRefGoogle Scholar
  100. Ikegami S, Tamura S, Kanatani H (1967) Starfish gonad: action and chemical identification of spawning inhibitor. Sci Cult 158:1052–1053Google Scholar
  101. Iken KB, Baker BJ (2003) Ainigmaptilones, sesquiterpenes from the Antarctic gorgonian coral Ainigmaptilon antarcticus. J Nat Prod 66:888–890PubMedCrossRefGoogle Scholar
  102. Iken K, Amsler CD, Amsler MO, McClintock JB, Baker BJ (2009) Field studies on deterrent properties of phlorotannins in Antarctic brown algae. Bot Mar 52:547–557CrossRefGoogle Scholar
  103. Iorizzi M, Bryan P, McClintock J, Minale L, Palagiano E, Maurelli S et al (1995) Chemical and biological investigation of the polar constituents of the starfish Luidia clathrata, collected in the Gulf of Mexico. J Nat Prod 58:653–671PubMedCrossRefGoogle Scholar
  104. Jangoux M (1982) Food and Feeding Mechanism: Asteroidea. In: Jangoux M, Lawrence J (eds) Echinoderm Nutrition. A. A. Balkema, RotterdamGoogle Scholar
  105. Johnson LG, Cartwright CM (1996) Thyroxine-accelerated larval development in the Crown-of-Thorns starfish, Acanthaster planci. Biol Bull 190:299–301PubMedCrossRefGoogle Scholar
  106. Johnson PC, Coster JE (1979) Techniques for evaluating the influence of behavioural chemicals on dispersion of the Southern Pine beetle within infestations. In: Coster JE, Searcy JL (eds) Evaluating Control Tactics for the Southern Pine Beetle. Technical Bulletin 1613. Department of Agriculture, Forest Service, United States, LouisianaGoogle Scholar
  107. Johnson CR, Sutton DC (1994) Bacteria on the surface of crustose coralline algae induce metamorphosis of the crown-of-thorns starfish Acanthaster planci. Mar Biol 120:305–310CrossRefGoogle Scholar
  108. Johnson CR, Sutton DC, Olson RR, Giddins R (1991) Settlement of crown-of-thorns starfish: role of bacteria on surfaces of coralline algae and a hypothesis for deepwater recruitment. Mar Ecol Prog Ser 71:143–162CrossRefGoogle Scholar
  109. Kanatani H (1969) Induction of spawning and oocyte maturation by L-methyl-adenine in starfishes. Exp Cell Res 57:333–337PubMedCrossRefGoogle Scholar
  110. Kanatani H (1973) Maturation-inducing substances in starfishes. Int Rev Cytol 35:253–298PubMedCrossRefGoogle Scholar
  111. Kanatani H (1985) Oocyte growth and maturation in starfish. In: Metz CB, Monroy A (eds) Biology of fertilization: model systems and oogenesis, Vol. 1. Academic Press, Cambridge, p 119CrossRefGoogle Scholar
  112. Karasudani I, Koyama T, Nakandakari S, Aniya Y (1996) Purification of anticoagulant factor from the spine venom of the crown-of-thorns starfish, Acanthaster planci. Toxicon 34:871–879PubMedCrossRefGoogle Scholar
  113. Keegan BF, Könnecker G (1980) Aggregation in echinoderms on the West coast of Ireland. An ecological perspective. In: Jangoux M (ed) Echinoderms: present and past. Balkema Publishers, Rotterdam, pp 199–200Google Scholar
  114. Keesing JJK (1993) Influence of persistent sub-infestation density Acanthaster planci (L.) and high density Echinometra mathaei (de Blainville) populations on coral reef community structure in Okinawa, Japan. In: Proceedings of the 7th International Coral Reef Symposium, Guam, Micronesia, 22–27 June 1992 Vol. 2, pp 769–779: University of Guam Marine LaboratoryGoogle Scholar
  115. Kepchia D, Moliver S, Chohan K, Phillips C, Luetje CW (2017) Inhibition of insect olfactory behavior by an airborne antagonist of the insect odorant receptor co-receptor subunit. PLoS One 12:e0177454PubMedPubMedCentralCrossRefGoogle Scholar
  116. Kita M, Kitamura M, Uemura D (2010) Pheromones of Marine Invertebrates and Algae. In: Mori K (ed) Reference module in chemistry, molecular sciences and chemical engineering: comprehensive natural products II: chemistry and biology. Elsevier, Oxford, pp 263–281Google Scholar
  117. Kitagawa I, Kobayashi M (1977) On the structure of the major saponin from the starfish Acanthaster planci. Tetrahedron Lett 18:859–862CrossRefGoogle Scholar
  118. Komori T (1997) Toxins from the starfish Acanthaster planci and Asterina pectinifera. Toxicon 35:1537–1548PubMedCrossRefGoogle Scholar
  119. Kornprobst J-M, Sallenave C, Barnathan G (1998) Sulfated compounds from marine organisms. Comp Biochem Physiol, Part B 119B:1–51Google Scholar
  120. Kubanek J, Whalen KE, Engel S, Kelly SR, Henkel TP, Fenical W et al (2002) Multiple defensive roles for triterpene glycosides from two Caribbean sponges. Oecologia 131(1):125–136PubMedCrossRefGoogle Scholar
  121. Laudien J, Wahl M (1999) Indirect effects of epibiosis on host mortality: seastar predation on differently fouled mussels. Mar Ecol 20:35–47CrossRefGoogle Scholar
  122. Laudien J, Wahl M (2004) Associational resistance of fouled blue mussels (Mytilus edulis) against starfish (Asterias rubens) predation: relative importance of structural and chemical properties of the epibionts. Helgol Mar Res 58:162–167CrossRefGoogle Scholar
  123. Lawrence JM (1991) A chemical alarm response in Pycnopodia helianthoides (Echinodermata: Asteroidea). Mar Freshwat Behav Physiol 19(1):39–44CrossRefGoogle Scholar
  124. Leal W (2014) The enigmatic reception of DEET - the gold standard of insect repellents. Curr Opinion Insect Sci 6:93–98CrossRefGoogle Scholar
  125. Levitan DR (2005) Sex-specific spawning behavior and its consequences in an external fertilizer. Am Nat 165(6):682–694PubMedGoogle Scholar
  126. Lim H, Sorensen PW (2012) Common carp implanted with prostaglandin F2α release a sex pheromone complex that attracts conspecific males in both the laboratory and field. J Chem Ecol 38:127–134PubMedCrossRefGoogle Scholar
  127. Lof ME, Etienne RS, Powell J, Gee M, Hemerik L (2008) The effect of chemical information on the spatial distribution of fruit flies: I Model Results. Bull Math Biol 70:1827–1849PubMedPubMedCentralCrossRefGoogle Scholar
  128. Loosanoff V (1961) Biology and methods of controlling the starfish, Asterias forbesi (Desor). United States department of the interior fish and wildlife service bureau of commerical fisheries, Washington DCGoogle Scholar
  129. Lopanik NB (2014) Chemical defensive symbioses in the marine environment. Funct Ecol 28(2):328–340CrossRefGoogle Scholar
  130. Lotterhos K, Levitan D (2010) Gamete release and spawning behavior in broadcast spawning marine invertebrates. In: Leonard J, Córdoba-Aguilar A (eds) The evolution of primary sexual characters in animals. Oxford University Press, Oxford, pp 99–120Google Scholar
  131. Lucas J (1973) Reproductive and larval biology of Acanthaster planci (L.) in Great Barrier Reef waters. Micronesica 9:197–203Google Scholar
  132. Lucas JS (2013) Crown-of-thorns starfish. Curr Biol 23(21):945–946CrossRefGoogle Scholar
  133. Lucas JS, Hart RJ, Howden ME, Salathe R (1979) Saponins in eggs and larvae of Acanthaster planci (L.) (Asteroidea) as chemical defences against planktivorous fish. J Exp Mar Biol Ecol 40:155–165CrossRefGoogle Scholar
  134. Mackie AM (1970) Avoidance reactions of marine invertebrates to either steroid glycosides of starfish or synthetic surface-active agents. J Exp Mar Biol Ecol 5:63–69CrossRefGoogle Scholar
  135. Mackie AM, Lasker R, Grant PT (1968) Avoidance reactions of a mollusc Buccinum undatum to saponin-like surface-active substances in extracts of the starfish Asterias rubens and Marthasterias glacialis. Comp Biochem Physiol 26:415–428CrossRefGoogle Scholar
  136. Mackie AM, Singh HT, Owen JM (1977) Studies on the distribution, biosynthesis and function of steroidal saponins in echinoderms. Comp Biochem Physiol B: Biochem Mol Biol 56B:9–14CrossRefGoogle Scholar
  137. Magnesen T, Redmond KJ (2012) Potential predation rates by the sea stars Asterias rubens and Marthasterias glacialis, on juvenile scallops, Pecten maximus, ready for sea ranching. Aquacult Int 20:189–199CrossRefGoogle Scholar
  138. Mah CL, Blake DB (2012) Global diversity and phylogeny of the Asteroidea (Echinodermata). PLoS One 7:e35644PubMedPubMedCentralCrossRefGoogle Scholar
  139. Maier MS (2008) Biological activities of sulfated glycosides from echinoderms. Stud Nat Prod Chem 35:311–354CrossRefGoogle Scholar
  140. Manker DC, Faulkner DJ (1987) Diterpenes from the marine pulmonate Trimusculus reticulatus. Tetrahedron 43(16):3677–3680CrossRefGoogle Scholar
  141. Manker DC, Faulkner DJ (1989) Vallartanones A and B, polypropionate metabolites of Siphonaria maura from Mexico. J Org Chem 54(22):5374–5377CrossRefGoogle Scholar
  142. Martin D, Britayev TA (1998) Symbiotic Polychaetes: Review of known species. Oceanogr. Mar Biol Annu Rev 36:217–340Google Scholar
  143. Matsumoto M, Solzin J, Helbig A, Hagen V, Ueno S-i, Kawase O et al (2003) A sperm-activating peptide controls a cGMP-signaling pathway in starfish sperm. Dev Biol 260:314–324PubMedCrossRefGoogle Scholar
  144. Mauzey KP, Birkeland C, Dayton PK (1968) Feeding behavior of asteroids and escape responses of their prey in the Puget Sound region. Ecology 49:603–619CrossRefGoogle Scholar
  145. Mayo P, Mackie AM (1976) Studies of avoidance reactions in several species of predatory British seastars (Echinodermata: Asteroidea). Mar Biol Res 38:41–49CrossRefGoogle Scholar
  146. McCarthy DA, Young CM (2004) Effects of water-borne gametes on the aggregation behavior of Lytechinus variegatus. Mar Ecol Prog Ser 283:191–198CrossRefGoogle Scholar
  147. McClintock JB, Lawrence JM (1984) Ingestive conditioning in Luidia clathrata (Say) (Echinodermata: Asteroidea): Effect of nutritional condition on selectivity, teloreception, and rates of ingestion. Mar Freshwat Behav Physiol 10:167–181CrossRefGoogle Scholar
  148. McClintock JB, Vernon JD (1990) Chemical defense in the eggs and embryos of antarctic sea stars (Echinodermata). Mar Biol Res 105:491–495CrossRefGoogle Scholar
  149. McClintock JB, Baker BJ, Hamann MT, Moon BH (1994a) Homarine as a feeding deterrent in common shallow-water antarctic lamellarian gastropod Marseniopsis mollis: A rare example of chemical defense in a marine prosobranch. J Chem Ecol 20:2539–2549PubMedCrossRefGoogle Scholar
  150. McClintock JB, Baker BJ, Slattery M, Heine JN, Bryan PJ, Yoshida W et al (1994b) Chemical defense of common antarctic shallow-water nudibranch Tritoniella belli eliot (Mollusca: Tritonidae) and its prey,Clavularia frankliniana rouel (Cnidaria: Octocorallia). J Chem Ecol 20:3361PubMedCrossRefGoogle Scholar
  151. McClintock J, Mahon A, Peters K, Amsler C, Baker BJ (2003) Chemical defences in embryos and juveniles of two common Antarctic sea stars and an isopod. Antarct Sci 15:339–344CrossRefGoogle Scholar
  152. McClintock JB, Angus RA, Ho C, Amsler CD, Baker BJ (2008) A laboratory study of behavioral interactions of the Antarctic keystone sea star Odontaster validus with three sympatric predatory sea stars. Mar Biol 154:1077–1084CrossRefGoogle Scholar
  153. McClintock JB, Amsler CD, Baker BJ (2013) Chemistry and ecological role of starfish secondary metabolites. In: Lawrence JM (ed) Starfish: Biology and Ecology of the Asteroidea. Johns Hopkins University Press, Baltimore, pp 81–89Google Scholar
  154. McCoy MW, Touchon JC, Landberg T, Warkentin KM, Vonesh JR (2012) Prey responses to predator chemical cues: disentangling the importance of the number and biomass of prey consumed. PLoS One 7:e47495PubMedPubMedCentralCrossRefGoogle Scholar
  155. Mead KS, Wiley MB, Koehl M, Koseff JR (2003) Fine-scale patterns of odor encounter by the antennules of mantis shrimp tracking turbulent plumes in wave-affected and unidirectional flow. J Exp Biol 206(1):181–193PubMedCrossRefGoogle Scholar
  156. Meijer L, Maclouf J, Bryant RW (1986) Contrasting effects of fatty acids on oocyte maturation in several starfish species. Prostaglandins Leukot Med 23:179–184PubMedCrossRefGoogle Scholar
  157. Melarange R, Potton DJ, Thorndyke MC, Elphick MR (1999) SALMFamide neuropeptides cause relaxation and eversion of the cardiac stomach in starfish. Proc Royal Soci London B 266:1785–1789CrossRefGoogle Scholar
  158. Menge BA, Freidenburg TL (2001) Keystone species. In: Levin LA (ed) Encyclopedia of Biodiversity. Academic Press, New York, pp 613–631CrossRefGoogle Scholar
  159. Menge BA, Sanford E (2013) Ecological role of sea stars from populations to meta-ecosystems. In: Lawrence JM (ed) Starfish: Biology and Ecology of the Asteroidea. John Hopkins University Press, Baltimore, pp 67–80Google Scholar
  160. Mercier A, Hamel J-F (2010) Synchronized breeding events in sympatric marine invertebrates: role of behavior and fine temporal windows in maintaining reproductive isolation. Behav Ecol Sociobiol 64(11):1749–1765CrossRefGoogle Scholar
  161. Mercier A, Hamel J-F (2013) Reproduction of Asteroidea. In: Lawrence JL (ed) Starfish: biology and ecology of the Asteroidea. The Johns Hopkins University Press, Baltimore, pp 37–50Google Scholar
  162. Metaxas A (2013) Larval Ecology, Settlement and Recruitment of Asteroids. In: Lawrence J (ed) Starfish: biology and ecology of the Asteroidea. The Johns Hopkins University Press, Baltimore, pp 59–66Google Scholar
  163. Miller RL (1989) Evidence for the presence of sexual pheromones in free-spawning starfish. J Exp Mar Biol Ecol 130:205–221CrossRefGoogle Scholar
  164. Miller RL, Vogt R (1996) An N-terminal partial sequence of the 13 kDa Pycnopodia helianthoides sperm chemoattractant 'startrak' possesses sperm-attracting activity. J Exp Biol 199:311–318PubMedGoogle Scholar
  165. Minale L, Riccio R, Zollo F (1993) Steroidal Oligoglycosides and Polyhydroxysteroids from Echinoderms. In: Herz W, Kirby GW, Moore RE, Steglich W, Tamm C (eds) Progress in the Chemistry of Organic Natural Products, edn, Vol. 62. Springer, Vienna, pp 75–308Google Scholar
  166. Minale L, Riccio R, Zollo F (1995) Structural Studies on Chemical Constituents of Echinoderms. In: Atta-ur-Rahman (ed) Stud. Nat. Prod. Chem., Vol. 15. Elsevier Science, Amsterdam, pp 43–110Google Scholar
  167. Mita M (1985) Effect of cysteine and its derivatives on 1-methyladenine production by starfish follicle cells. Develop Growth Differ 27:563–572CrossRefGoogle Scholar
  168. Mita M, Ueta N, Nagahama Y (1987) In vitro induction of starfish oocyte maturation by cysteine alkylesters. Develop Growth Differ 29:607–616CrossRefGoogle Scholar
  169. Mita M, Yoshikuni M, Ohno K, Shibata Y, Paul-Prasanth B, Pitchayawasin S et al (2009) A relaxin-like peptide purified from radial nerves induces oocyte maturation and ovulation in the starfish, Asterina pectinifera. Proc Natl Acad Sci U S A 106:9507–9512PubMedPubMedCentralCrossRefGoogle Scholar
  170. Mladenov PV, Chia FS (1983) Development, settling behaviour, metamorphosis and pentacrinoid feeding and growth of the feather star Florometra serratissima. Mar Biol Res 73:309–323CrossRefGoogle Scholar
  171. Moore RJ, Campbell AC (1985) An investigation into the behavioural and ecological basis for periodic infectations of Asterias rubens. In: Keegan BF, O'Connor BDS (eds) Proceedings of the Fifth International Echinoderm Conference, Galway. Balkema, RotterdamGoogle Scholar
  172. Moore R, Huxley C (1976) Aversive behaviour of crown-of-thorns starfish to coral evoked by food-related chemicals. Nature 263:407–409PubMedCrossRefGoogle Scholar
  173. Moore PA, Lepper DME (1997) Role of chemical signals in the orientation behaviour of the sea star Asterias forbesi. Biol Bull 192:410–417Google Scholar
  174. Moreau M, Guerrier P, Doree M, Ashley CC (1978) Hormone-induced release of intracellular Ca2+ triggers meiosis in starfish oocytes. Nat Aust 272:251–253CrossRefGoogle Scholar
  175. Mori BA, Whitener AB, Leinweber Y, Revadi S, Beers EH, Witzgall P et al (2017) Enhanced yeast feeding following mating facilitates control of the invasive fruit pest Drosophila suzukii. J Appl Ecol 54:170–177CrossRefGoogle Scholar
  176. Murabe N, Hatoyama H, Komatsu M, Kaneko H, Nakajima Y (2007) Adhesive papillae on the brachiolar arms of brachiolaria larvae in two starfishes, Asterina pectinifera and Asterias amurensis, are sensors for metamorphic inducing factor(s). Develop Growth Differ 49:647–656CrossRefGoogle Scholar
  177. Nakamura M, Okaji K, Higa Y, Yamakawa E, Mitarai S (2014) Spatial and temporal population dynamics of the crown-of-thorns starfish, Acanthaster planci, over a 24-years period along the central west coast of Okinawa Island, Japan. Mar Biol 161(11):2521–2530CrossRefGoogle Scholar
  178. Naruse M, Suetomo H, Matsubara T, Sato T, Yanagawa H, Hoshi M et al (2010) Acrosome reaction-related steroidal saponin, Co-ARIS, from the starfish induces structural changes in microdomains. Dev Biol 347:147–153PubMedCrossRefGoogle Scholar
  179. Nevenzel JC (1970) Occurrence, function and biosynthesis of wax esters in marine organisms. Lipids 5:308–319PubMedCrossRefGoogle Scholar
  180. Nishigaki T, Chiba K, Miki W, Hoshi M (1996) Structure and function of asterosaps, sperm-activating peptides from the jelly coat of starfish eggs. Zygote 4(03):237–245PubMedCrossRefGoogle Scholar
  181. Nishigaki T, Chiba K, Hoshi M (2000) A 130-kDa membrane protein of sperm flagella is the receptor for asterosaps, sperm-activating peptides of starfish Asterias amurensis. Dev Biol 219:154–162PubMedCrossRefGoogle Scholar
  182. Núñez-Pons L, Avila C (2014) Deterrent activities in the crude lipophilic fractions of Antarctic benthic organisms: chemical defences against keystone predators. Polar Res 33:21624CrossRefGoogle Scholar
  183. Núñez-Pons L, Carbone M, Vázquez J, Rodríguez J, Nieto RM, Varela MM et al (2012) Natural products from Antarctic colonial ascidians of the genera Aplidium and Synoicum: Variability and defensive role. Mar Drugs 10:1741–1764PubMedPubMedCentralCrossRefGoogle Scholar
  184. Núñez-Pons L, Carbone M, Vázquez J, Gavagnin M, Avila C (2013) Lipophilic defenses from Alcyonium soft corals of Antarctica. J Chem Ecol 39(5):675–685PubMedCrossRefGoogle Scholar
  185. Olliff ERR (2013) Symbiosis of the sea star shrimp, Periclimenes soror Nobili, 1904 (Decapoda, Palaemonidae), and cushion star, Culcita novaeguineae Müller & Troschel, 1842 (Echinodermata, Asteroidea, Oreasteridae): host finding and benefits. Crustaceana 86:564–577CrossRefGoogle Scholar
  186. Ormond RFG, Campbell AC, Head SH, Moore RJ, Rainbow PR, Saunders AP (1973) Formation and breakdown of aggregations of the Crown-of-Thorns starfish, Acanthaster planci (L.) Nature 246:167–168CrossRefGoogle Scholar
  187. Ota E, Nagashima Y, Shiomi K, Sakurai T, Kojima C, Waalkes MP et al (2006) Caspase-independent apoptosis induced in rat liver cells by plancitoxin I, the major lethal factor from the crown-of-thorns starfish Acanthaster planci venom. Toxicon 48:1002–1010PubMedCrossRefGoogle Scholar
  188. Paine RT (1966) Food web complexity and species diversity. Am Nat 1:65–75CrossRefGoogle Scholar
  189. Paine R, Levin S (1981) Intertidal landscapes: disturbance and the dynamics of pattern. Ecol Monogr 51:145–178CrossRefGoogle Scholar
  190. Palagiano E, Zollo F, Minale L, Iorizzi M, Bryan P, McClintock J et al (1996) Isolation of 20 glycosides from the starfish Henricia downeyae, collected in the Gulf of Mexico. J Nat Prod 59(4):348–354PubMedCrossRefGoogle Scholar
  191. Papadopoulou K, Melton RE, Leggett M, Daniels MJ, Osbourn AE (1999) Compromised disease resistance in saponin-deficient plants. Proc Natl Acad Sci U S A 96:12923–12928PubMedPubMedCentralCrossRefGoogle Scholar
  192. Pathirana C, Andersen RJ (1986) Imbricatine, an unusual benzyltetrahydroisoquinoline alkaloid isolated from the starfish Dermasterias imbricata. J Am Chem Soc 108:8288–8289CrossRefGoogle Scholar
  193. Patterson MJ, Bland J, Lindgren EW (1978) Physiological response of symbiotic polychaetes to host saponins. J Exp Mar Biol Ecol 33:51–56CrossRefGoogle Scholar
  194. Pearse J, Bosch I (1986) Are the feeding larvae of the commonest Antarctic asteroid really demersal? Bull Mar Sci 39:477–484Google Scholar
  195. Pearse JS, Eernisse DJ, Pearse VB, Beauchamp KA (1986) Photoperiodic regulation of gametogenesis in sea stars, with evidence for an annual calendar independent of fixed daylength. Am Zool 26:417–431CrossRefGoogle Scholar
  196. Pennington JT (1985) The ecology of fertilization of echinoid eggs: the consequences of sperm dilution, adult aggregation, and synchronous spawning. Biol Bull 169(2):417–430PubMedCrossRefGoogle Scholar
  197. Peters KJ, Amsler CD, McClintock JB, Soest RWM, Baker BJ (2009) Palatability and chemical defenses of sponges from the western Antarctic Peninsula. Mar Ecol Prog Ser 385:77–85CrossRefGoogle Scholar
  198. Petie R, Garm A, Hall MR (2016a) Crown-of-thorns starfish have true image forming vision. Frontiers Zool 13(1):41CrossRefGoogle Scholar
  199. Petie R, Hall MR, Hyldahl M, Garm A (2016b) Visual orientation by the crown-of-thorns starfish (Acanthaster planci). Coral Reefs 35:1139–1150CrossRefGoogle Scholar
  200. Pickett JA, Wadhams LJ, Woodcock CM (1997) Developing sustainable pest control from chemical ecology. Agric Ecosyst Environ 64:149–156CrossRefGoogle Scholar
  201. Popov RS, Ivanchina NV, Kicha AA, Malyarenko TV, Grebnev BB, Dmitrenok PS et al (2016) LC-MS-based metabolome analysis on steroid metabolites from the starfish Patiria (=Asterina) pectinifera in conditions of active feeding and stresses. Metabolomics 12:1106.  https://doi.org/10.1007/s11306-016-1048-z Google Scholar
  202. Pratchett MS (2001) Influence of coral symbionts on feeding preferences of crown-of-thorns starfish Acanthaster planci in the western Pacific. Mar Ecol Prog Ser 214:111–119CrossRefGoogle Scholar
  203. Pratchett MS, Caballes CF, Rivera-Posada JA, Sweatman HPA (2014) Limits to understanding and managing outbreaks of crown-of-thorns starfish (Acanthaster spp.) In: Hughes R, Hughes D, Smith I (eds) Oceanogr. Mar. Biol. Annu. Rev., Vol. 52. CRC Press, Boca Raton, pp 133–200Google Scholar
  204. Price HL, Gohad NV, Mount AS, Wendt DE (2017) Investigation of larval settlement pathways in the marine bryozoan, Bugula neritina. J Exp Mar Biol Ecol 486:69–76CrossRefGoogle Scholar
  205. Prinsb J, Anch S (1969) The aggregation behavior of Diadema (Echinodermata, Echinoidea). Micronesica 165(171):1Google Scholar
  206. Raible F, Tessmar-Raible K, Arboleda E, Kaller T, Bork P, Arendt D et al (2006) Opsins and clusters of sensory G-protein-coupled receptors in the sea urchin genome. Dev Biol 300(1):461–475PubMedCrossRefGoogle Scholar
  207. Rainbow PS (1974) The demonstration of chemosensory food detection in Hymenocera picta Dana (Decapoda, Caridea), a proposed predator of the crown-of-thorns starfish Acanthaster planci (L). Afr J Trop Hydrobiol Fish 3:183–191Google Scholar
  208. Regnier FE (1971) Semiochemicals-Structure and Function. Biol Reprod 4:309–326PubMedCrossRefGoogle Scholar
  209. Reuter KE, Levitan DR (2010) Influence of sperm and phytoplankton on spawning in the echinoid Lytechinus variegatus. Biol Bull 219(3):198–206PubMedCrossRefGoogle Scholar
  210. Rice SH (1985) An anti-predator chemical defense of the marine pulmonate gastropod Trimusculus reticulatus (Sowerby). J Exp Mar Biol Ecol 93:83–89CrossRefGoogle Scholar
  211. Riedel F (1992) A re-evaluation of the ontogeny of Cabestana spengleri (Perry, 1811). Veliger 35:117–121Google Scholar
  212. Riegl B, Berumen M, Bruckner A (2013) Coral population trajectories, increased disturbance and management intervention: a sensitivity analysis. Ecol Evol 3(4):1050–1064PubMedPubMedCentralCrossRefGoogle Scholar
  213. Rilov G, Schiel DR (2011) Community regulation: the relative importance of recruitment and predation intensity of an intertidal community dominant in a seascape context. PLoS One 6(8):e23958PubMedPubMedCentralCrossRefGoogle Scholar
  214. Rivera-Posada JA, Caballes CF, Pratchett MS (2014) Size-related variation in arm damage frequency in the crown-of-thorns sea star, Acanthaster planci. J Coastal Life Med 2:187–195Google Scholar
  215. Roberts RE, Motti CA, Baughman KW, Satoh N, Hall MR, Cummins SF (2017) Identification of putative olfactory G-protein coupled receptors in Crown-of-Thorns starfish, Acanthaster planci. BMC Genomics 18:400–415PubMedPubMedCentralCrossRefGoogle Scholar
  216. Rochette R, Hamel J-F, Himmelman JH (1994) Foraging strategy of the asteroid Leptasterias polaris: role of prey odors, current and feeding status. Mar Ecol Prog Ser 106:93–100CrossRefGoogle Scholar
  217. Rotjan RD, Lewis SM (2008) Impact of coral predators on tropical reefs. Mar Ecol Prog Ser 367:73–91CrossRefGoogle Scholar
  218. Roux MM, Townley IK, Raisch M, Reade A, Bradham C, Humphreys G et al (2006) A functional genomic and proteomic perspective of sea urchin calcium signaling and egg activation. Dev Biol 300(1):416–433PubMedCrossRefGoogle Scholar
  219. Rumrill SS (1989) Population size-structure, juvenile growth, and breeding periodicity of the sea star Asterina miniata in Barkley Sound, British Columbia. Mar Ecol Prog Ser 56:37–47CrossRefGoogle Scholar
  220. Sameoto JA, Metaxas A (2008) Can salinity-induced mortality explain larval vertical distribution with respect to a halocline? Biol Bull 214:329–338PubMedCrossRefGoogle Scholar
  221. Savitri IKE, Ibrahim F, Sahlan M, Wijanarko A (2011) Rapid and efficient purification method of phospholipase A2 from Acanthaster planci. Inter J Pharma Bio Sci 2:401–406Google Scholar
  222. Scheibling RE, Metaxas A (2008) Abundance, spatial distribution, and size structure of the sea star Protoreaster nodosus in Palau, with notes on feeding and reproduction. Bull Mar Sci 82:221–235Google Scholar
  223. Semmens DC, Dane RE, Pancholi MR, Slade SE, Scrivens JH, Elphick MR (2013) Discovery of a novel neurophysin-associated neuropeptide that triggers cardiac stomach contraction and retraction in starfish. J Exp Biol 216:4047–4053PubMedCrossRefGoogle Scholar
  224. Semmens DC, Mirabeau O, Moghul I, Pancholi MR, Wurm Y, Elphick MR (2016) Transcriptomic identification of starfish neuropeptide precursors yields new insights into neuropeptide evolution. Open Biol 6:150224PubMedPubMedCentralCrossRefGoogle Scholar
  225. Shikuma NJ, Pilhofer M, Weiss GL, Hadfield MG, Jensen GJ, Newman DK (2014) Marine tubeworm metamorphosis induced by arrays of bacterial phage tail–like structures. Science 343(6170):529–533PubMedPubMedCentralCrossRefGoogle Scholar
  226. Shiomi K, Midorikawa S, Ishida M, Nagashima Y, Nagai H (2004) Plancitoxins, lethal factors from the crown-of-thorns starfish Acanthaster planci, are deoxyribonucleases II. Toxicon 44(5):499–506PubMedCrossRefGoogle Scholar
  227. Slattery M, Hamann MT, McClintock JB, Perry TL, Puglisi MP, Yoshida WY (1997) Ecological roles for water-borne metabolites from Antarctic soft corals. Mar Ecol Prog Ser 161:133–144CrossRefGoogle Scholar
  228. Sloan N (1980) Aspects of the feeding biology of asteroids. Oceanogr Mar Biol Annu Rev 18:57–124Google Scholar
  229. Sloan NA, Campbell AC (1982) Perception of food. In: Jangoux M, Lawrence JM (eds) Echinoderm Nutrition. A.A.Balkema, Rotterdam, pp 3–23Google Scholar
  230. Sloan NA, Northway SM (1982) Chemoreception by the asteroid Crossaster papposus (L.) J Exp Mar Biol Ecol 61:85–98CrossRefGoogle Scholar
  231. Smith RH (1971) Reproductive biology of a brooding sea-star Leptasterias pusilla (Fisher), in the Monterey Bay Region. PhD, Stanford UniversityGoogle Scholar
  232. Smith MK, Wang T, Suwansa-ard S, Motti CA, Elizur A, Zhao M et al (2017) The neuropeptidome of the Crown-of-Thorns Starfish, Acanthaster planci. J Proteome 165:61–68CrossRefGoogle Scholar
  233. Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC et al (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science 314(5801):941–952PubMedCrossRefGoogle Scholar
  234. Sorensen PW (2015) Applications of pheromones in invasive fish control and fishery conservation. In: Sorensen PW, Wisenden BD (eds) Fish Pheromones and related cues. John Wiley and Sons, Hoboken, pp 255-268Google Scholar
  235. Sorensen PW, Hoye TR (2007) A critical review of the discovery and application of a migratory pheromone in an invasive fish, the sea lamprey Petromyzon marinus L. J Fish Bio 71:100–114CrossRefGoogle Scholar
  236. Takahashi K (1967) The catch apparatus of the sea-urchin spine. II. Responses to stimuli. J Faculty Science Univ Tokyo IV 11:121–130Google Scholar
  237. Tapiolas DM, Raina J-B, Lutz A, Willis BL, Motti CA (2013) Direct measurement of dimethylsulfoniopropionate (DMSP) in reef-building corals using quantitative nuclear magnetic resonance (qNMR) spectroscopy. J Exp Mar Biol Ecol 443:85–89CrossRefGoogle Scholar
  238. Teruya T, Suenaga K, Koyama T, Nakano Y, Uemura D (2001) Arachidonic acid and α-linolenic acid, feeding attractants for the crown-of-thorns sea star Acanthaster planci, from the sea urchin Toxopneustes pileolus. J Exp Mar Biol Ecol 266:123–134CrossRefGoogle Scholar
  239. Thornber C (2007) Associational resistance mediates predator–prey interactions in a marine subtidal system. Mar Ecol 28:480–486CrossRefGoogle Scholar
  240. Thrush SF (1988) Behavioural observations on sublittoral populations of starfish in Lough Hyne. Ir Nat J 22(10):430–436Google Scholar
  241. Tokeshi M, Daud JRP (2011) Assessing feeding electivity in Acanthaster planci: a null model analysis. Coral Reefs 30:227–235CrossRefGoogle Scholar
  242. Tominaga H, Komatsu M, Oguro C (1994) Aggregation for spawning in the breeding season of the sea-star, Asterina minor Hayashi. In: David B, Guille A, Féral J, Roux M (eds) Echinoderms Through Time (Echinoderms Dijon). Balkema, Rotterdam, pp 369–373Google Scholar
  243. Toraya T, Maoka T, Tsuji H, Kobayashi M (1995) Purification and structural determination of an inhibitor of starfish oocyte maturation from a Bacillus species. Appl Environ Microbiol 61:1799–1804PubMedPubMedCentralGoogle Scholar
  244. Ullrich-Lüter EM, Dupont S, Arboleda E, Hausen H, Arnone MI (2011) Unique system of photoreceptors in sea urchin tube feet. Proc Natl Acad Sci U S A 108:8367–8372PubMedPubMedCentralCrossRefGoogle Scholar
  245. Unger B, Lott C (1994) In-situ studies on the aggregation behaviour of the sea urchin Sphaerechinus granularis Lam.(Echinodermata: Echinoidea). In: David B, Guille A, Feral J-P, Roux M (eds) Echinoderms through time. Balkema, Rotterdam, pp 913–919Google Scholar
  246. Vadas R, Elner R, Garwood P, Babb I (1986) Experimental evaluation of aggregation behavior in the sea urchin Strongylocentrotus droebachiensis. Mar Biol 90(3):433–448CrossRefGoogle Scholar
  247. Valentinčič T (1973) Food finding and stimuli to feeding in the sea star Marthasterias glacialis. Netherlands J Sea Res 7:191–199CrossRefGoogle Scholar
  248. Valentinčič T (1983) Innate and learned responses to external stimuli in asteroids. In: Jangoux M, Lawrence JM (eds) Echinoderm studies, Vol. 1, pp 111–138Google Scholar
  249. Valentinčič T (1985) Behavioral study of chemoreception in the sea star Marthasterias glacialis: Structure-activity relationships of lactic acid, amino acids, and acetylcholine. J Comp Physiol A 157:537–545PubMedCrossRefGoogle Scholar
  250. Van Veldhuizen HD, Oakes VJ (1981) Behavioral responses of seven species of asteroids to the asteroid predator, Solaster dawsoni (responses of asteroids to the predator Solaster dawsoni). Oecologia 48:214–220PubMedCrossRefGoogle Scholar
  251. Voogt PA, Huiskamp R (1979) Sex-dependence and seasonal variation of saponins in the gonads of the starfish Asterias rubens: their relation to reproduction. Comp Biochem Physiol A Physiol 62A:1049–1055CrossRefGoogle Scholar
  252. Wagner RH, Phillips DW, Standing JD, Hand C (1979) Commensalism or mutualism: Attraction of a sea star towards its symbiotic polychaete. J Exp Mar Biol Ecol 39:205–210CrossRefGoogle Scholar
  253. Wellington GM, Trench RK (1985) Persistence and coexistence of a nonsymbiotic coral in open reef environments. Proc Natl Acad Sci U S A 82:2432–2436PubMedPubMedCentralCrossRefGoogle Scholar
  254. Wisenden BD (2015) Chemical cues that indicate risk of predation. In: Sorensen PW, Wisenden BD (eds) Fish Pheromones and Related Cues. John Wiley & Sons, Inc, Oxford, pp 131–148Google Scholar
  255. Wulff JL (2006) Sponge systematics by starfish: predators distinguish cryptic sympatric species of Caribbean fire sponges, Tedania ignis and Tedania klausi n. sp. (Demospongiae, Poecilosclerida). Biol Bull 211:83–94PubMedCrossRefGoogle Scholar
  256. Xu R, Barker M (1990) Photoperiodic regulation of oogenesis in the starfish Sclerasterias mollis (Hutton 1872)(Echinodermata: Asteroidea). J Exp Mar Biol Ecol 141(2–3):159–168CrossRefGoogle Scholar
  257. Yamaguchi M (1973) Early life histories of coral reef asteroids, with special reference to Acanthaster planci (L.), vol. 2. Academic Press, New YorkCrossRefGoogle Scholar
  258. Yasuda N, Ogasawara K, Kajiwara K, Ueno M, Oki K, Taniguchi H et al (2010) Latitudinal differentiation of crown-of-thorns starfish, (Acanthaster planci) reproduction patterns through the Ryukyu Islands archipelago. Plankton Benthos Res 5:156–164CrossRefGoogle Scholar
  259. Yoshikuni M, Ishikawa K, Isobe M, Goto T, Nagahama Y (1988) Synergistic actions of disulfide-reducing agents on 1-methyladenine-induced oocyte maturation in starfish. Dev Biol 128:236–239PubMedCrossRefGoogle Scholar
  260. Zafiriou O (1972) Response of Asterias vulgaris to chemical stimuli. Mar Biol Res 17:100–107Google Scholar
  261. Zafiriou O, Whittle KJ, Blumer M (1972) Response of Asterias vulgaris to bivalves and bivalve tissue extracts. Mar Biol Res 13:137–145CrossRefGoogle Scholar
  262. Zimmer RK, Butman CA (2000) Chemical signaling processes in the marine environment. Biol Bull 198(2):168–187PubMedCrossRefGoogle Scholar
  263. Zimmer RK, Ferrier GA, Zimmer CA (2016) Keystone in: a glycoprotein cue drives predation on mussels and structures rocky intertidal communities. Mar Ecol Prog Ser 560:199–206CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Australian Institute of Marine Science (AIMS)TownsvilleAustralia
  2. 2.Genecology Research CentreUniversity of the Sunshine CoastMaroochydore DCAustralia
  3. 3.CSIRO Agriculture and FoodSt. LuciaAustralia
  4. 4.Centre for Marine Science, School of Biological SciencesThe University of QueenslandBrisbaneAustralia
  5. 5.Australian Rivers InstituteGriffith UniversityBrisbaneAustralia

Personalised recommendations