Skip to main content
Log in

De novo Synthesis of Linoleic Acid in Multiple Collembola Species

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Many ecological interactions in communities take place between consumers and the organisms they feed on. Continuous surplus of specific nutritional compounds in the diet may lead to evolutionary changes in the metabolic capacity of the consumer, leaving the biosynthesis of such compounds prone to genetic decay and render organisms auxotrophic. A nutrient that is essential to many organisms is the unsaturated fatty acid, linoleic acid (LA; 18:2n-6), which is important in the maintenance of cell membrane fluidity and as a precursor for signaling molecules. LA is readily synthesized in bacteria, protozoa and plants, but it was long thought that all animals lack this ability. Although the majority of animals lack the ability for LA biosynthesis, an increasing number of studies have shown that LA is commonly synthesized in arthropods. Here, we investigated a basal hexapod group, Collembola, to shed light on early evolution of LA synthetic ability in arthropods and its relation to dietary composition. We use stable isotope labeling to detect biosynthesis of LA in Collembola fed with 13C–OA oleic acid (OA; 18:1n-9), a precursor of LA. Our data demonstrate that LA biosynthesis is common among Collembola with 10 out of 16 tested species being able to synthesize LA and 4 species lacking this ability. However, we did not find clear evidence for a relationship between LA synthetic ability and the natural diet of species. Thus, the selective pressures underlying LA biosynthesis might be species-specific and further research will shed new light on understanding this evolutionary process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aboshi T, Shimizu N, Nakajima Y, Honda Y, Kuwahara Y, Amano H, Mori N (2013) Biosynthesis of linoleic acid in Tyrophagus mites (Acarina: Acaridae). Insect Biochem Mol Biol 43:991–996

    Article  CAS  PubMed  Google Scholar 

  • Belury MA (2002) Inhibition of carcinogenesis by conjugated linoleic acid: potential mechanisms of action. J Nutr 132:2995–2998

    CAS  PubMed  Google Scholar 

  • Berg MP, Stoffer M, Van den Heuvel HH (2004) Feeding guilds in Collembola based on digestive enzymes. Pedobiologia 48:589–601

    Article  Google Scholar 

  • Bernays E, Graham M (1988) On the evolution of host specificity in phytophagous arthropods. Ecology 69:886–892

    Article  Google Scholar 

  • Berthoud HR, Seeley RJ (2000) Neural and metabolic control of macronutrient intake. CRC Press, Florida

    Google Scholar 

  • Blaul B, Steinbauer R, Merkl P, Merkl R, Tschochner H, Ruther J (2014) Oleic acid is a precursor of linoleic acid and the male sex pheromone in Nasonia vitripennis. Insect Biochem Mol Biol 51:33–40

    Article  CAS  PubMed  Google Scholar 

  • Blomquist GJ, Dwyer LA, Chu AJ, Ryan RO, de Renobales M (1982) Biosynthesis of linoleic acid in a termite, cockroach and cricket. Insect Biochem 12:349–353

    Article  CAS  Google Scholar 

  • Borgeson CE, Kurtti TJ, Munderloh UG, Blomquist GJ (1991) Insect tissues, not microorganisms, produce linoleic acid in the house cricket and the American cockroach. Cell Mol Life Sci 47:238–241

    Article  CAS  Google Scholar 

  • Brandstetter B, Ruther J (2016) An insect with a delta-12 desaturase, the jewel wasp Nasonia vitripennis, benefits from nutritional supply with linoleic acid. Sci Nat 103:1–4

    Article  CAS  Google Scholar 

  • Carapelli A, Soto-Adames FN, Simon C, Frati F, Nardi F, Dallai R (2004) Secondary structure, high variability and conserved motifs for domain III of 12S rRNA in the Arthropleona (Hexapoda; Collembola). Insect Mol Biol 13:659–670

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain PM, Bull ID, Black HIJ, Ineson P, Evershed RP (2006) Collembolan trophic preferences determined using fatty acid distributions and compound-specific stable carbon isotope values. Soil Biol Biochem 38:1275–1281

    Article  CAS  Google Scholar 

  • Chatterjee K, Parmley WW, Ganz W, Forrester J, Walinsky P, Crexells C, Swan H (1973) Hemodynamic and metabolic responses to vasodilator therapy in acute myocardial infarction. Circulation 48:1183–1193

    Article  CAS  PubMed  Google Scholar 

  • Christiansen K (1964) Bionomics of Collembola. Annu Rev Entomol 9:147–178

    Article  Google Scholar 

  • Cortet J, Joffre R, Elmholt S, Krogh PH (2003) Increasing species and trophic diversity of mesofauna affects fungal biomass, mesofauna community structure and organic matter decomposition processes. Biol Fertil Soils 37:302–312

    Google Scholar 

  • Cripps C, Blomquist GJ, de Renobales M (1986) De novo biosynthesis of linoleic acid in insects. Biochim Biophys Acta 876:572–580

    Article  CAS  Google Scholar 

  • Cummings JH, Macfarlane GT (1997) Role of intestinal bacteria in nutrient metabolism. Clin Nutr 16:3–11

    Article  Google Scholar 

  • De Renobales M, Ryan RO, Heisler CR, McLean DL, Blomquist GJ (1986) Linoleic acid biosynthesis in the pea aphid, Acyrthosiphon pisum (Harris). Arch Insect Biochem Physiol 3:193–203

    Article  Google Scholar 

  • De Veth MJ, Bauman DE, Koch W, Mann GE, Pfeiffer AM, Butler WR (2009) Efficacy of conjugated linoleic acid for improving reproduction: a multi-study analysis in early-lactation dairy cows. J Dairy Sci 92:2662–2669

    Article  PubMed  Google Scholar 

  • Dixon AFG (1998) Aphid ecology - an optimization approach. Kluwer Academic Pub, The Netherlands

    Google Scholar 

  • Dwyer LA, Blomquist GJ, Nelson JH, Pomonis JG (1981) A 13C-NMR study of the biosynthesis of 3-methylpentacosane in the American cockroach. Biochim Biophys Acta 663:536–544

    Article  CAS  PubMed  Google Scholar 

  • Ellers J, Kiers TE, Currie CR, McDonald CR, Visser B (2012) Ecological interactions drive evolutionary loss of traits. Ecol Lett 15:1071–1082

    Article  PubMed  Google Scholar 

  • El-Yassimi A, Hichami A, Besnard P, Khan NA (2008) Linoleic acid induces calcium signaling, Src kinase phosphorylation, and neurotransmitter release in mouse CD36-positive gustatory cells. J Biol Chem 283:12949–12959

    Article  CAS  PubMed  Google Scholar 

  • Erban T, Rybanska D, Hubert J (2015) Population growth of the generalist mite Tyrophagus putrescentiae (Acari: Acaridida) following adaptation to high-or low-fat and high-or low-protein diets and the effect of dietary switch. Environ Entomol 44:1599–1604

    Article  PubMed  Google Scholar 

  • Givens DI (2015) Manipulation of lipids in animal-derived foods: can it contribute to public health nutrition? Eur J Lipid Sci Technol 117:1306–1316

    Article  CAS  Google Scholar 

  • Gostinčar C, Turk M, Gunde-Cimerman N (2010) The evolution of fatty acid desaturases and cytochrome b5 in eukaryotes. J Membr Biol 233:63–72

    Article  PubMed  Google Scholar 

  • Graf J, Ruby EG (1998) Host-derived amino acids support the proliferation of symbiotic bacteria. Proc Natl Acad Sci 95:1818–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenslade P, Simpson JA, Grgurinovic CA (2002) Collembola associated with fungal fruit-bodies in Australia: proceedings of the Xth international colloquium on Apterygota, České Budějovice 2000: Apterygota at the beginning of the third millennium. Pedobiologia 46:345–352

    Google Scholar 

  • Greenway AR, Griffiths DC, Furk C, Prior RNB (1974) Composition of triglycerides from aphids of six different families and from different seasonal forms of Aphis evonymi. J Insect Physiol 20:2423–2431

    Article  CAS  PubMed  Google Scholar 

  • Guerinot ML (1991) Iron uptake and metabolism in the rhizobia/legume symbioses. Plant Soil 130:199–209

    Article  CAS  Google Scholar 

  • Hashimoto K, Yoshizawa AC, Okuda S, Kuma K, Goto S, Kanehisa M (2008) The repertoire of desaturases and elongases reveals fatty acid variations in 56 eukaryotic genomes. J Lipid Res 49:183–191

    Article  CAS  PubMed  Google Scholar 

  • Hooper LV, Midtvedt T, Gordon JI (2002) How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 22:283–307

    Article  CAS  PubMed  Google Scholar 

  • Hopkin SP (1997) Biology of the springtails:(Insecta: Collembola). OUP Oxford Press, Oxford

    Google Scholar 

  • Jindra M, Sehnal F (1990) Linkage between diet humidity, metabolic water production and heat dissipation in the larvae of Galleria mellonella. Insect Biochem 20:389–395

    Article  CAS  Google Scholar 

  • Karczewska M (1970) From studies on the biology of the black cherry aphid Myzus cerasi (F.)(Homoptera, Aphididae) on cherry. Pol Pismo Entomol 40:345–359

    Google Scholar 

  • Kennedy JS, Booth CO (1951) Host alternation in Aphis fabae Scop. I. feeding preferences and fecundity in relation to the age and kind of leaves. Ann Appl Biol 38:25–64

    Article  Google Scholar 

  • Kikuchi Y, Hosokawa T, Fukatsu T (2011) Specific developmental window for establishment of an insect-microbe gut symbiosis. Appl Environ Microbiol 77:4075–4081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klecka J, Boukal DS (2012) Who eats whom in a pool? A comparative study of prey selectivity by predatory aquatic insects. PLoS One 7:e37741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klecka J, Boukal DS (2013) Foraging and vulnerability traits modify predator–prey body mass allometry: freshwater macroinvertebrates as a case study. J Anim Ecol 82:1031–1041

    Article  PubMed  Google Scholar 

  • Louloudes SJ, Kaplanis JN, Robbins WE, Monroe RE (1961) Lipogenesis from C14-acetate by the American cockroach. Ann Entomol Soc Am 54:99–103

    Article  CAS  Google Scholar 

  • Ma Y, Chen WJ, Li ZH, Zhang F, Gao Y, Luan YX (2017) Revisiting the phylogeny of Wolbachia in Collembola. Ecol Evol. doi:10.1002/ece3.2738

  • Malcicka M, Berg MP, Ellers J (2017) Ecomorphological adaptations in Collembola in relation to feeding strategies and microhabitat. Eur J Soil Biol 78:82–91

    Article  Google Scholar 

  • Matsumura M, Yasukawa H, Fukui T (2009) Influence of greenhouse cultivation management on seasonal prevalence of Tyrophagus similis Volgin (Acari: Acaridae): cultivated spinach in spring in Nara prefecture. Bull Nara Pref Agric Exp Sta 40:1–7

    Google Scholar 

  • Mensink RP, Sanders TA, Baer DJ, Hayes KC, Howles PN, Marangoni A (2016) The increasing use of interesterified lipids in the food supply and their effects on health parameters. Adv Nutr 7:719–729

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer BJ, Mann NJ, Lewis JL, Milligan GC, Sinclair AJ, Howe PR (2003) Dietary intakes and food sources of omega-6 and omega-3 polyunsaturated fatty acids. Lipids 38:391–398

    Article  CAS  PubMed  Google Scholar 

  • Morretti M, Dias ATC, de Bello F et al (2016) Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct Ecol doi. doi:10.1111/1365-2435.12776

  • Ohta Y, Nishikimi M (1999) Random nucleotide substitutions in primate nonfunctional gene for L-gulono-γ-lactone oxidase, the missing enzyme in L-ascorbic acid biosynthesis. Biochim Biophys Acta 1472:408–411

    Article  CAS  PubMed  Google Scholar 

  • Roughan PG, Slack CR (1982) Cellular organization of glycerolipid metabolism. Annu Rev Plant Physiol 33:97–132

    Article  CAS  Google Scholar 

  • Sauer E, Ponge JF (1988) Alimentary studies on the collembolan Paratullbergia callipygos using transmission electron microscopy. Pedobiologia 31:355–379

    Google Scholar 

  • Shimizu N, Naito M, Mori N, Kuwahara Y (2014) De novo biosynthesis of linoleic acid and its conversion to the hydrocarbon (Z, Z)-6, 9-heptadecadiene in the astigmatid mite, Carpoglyphus lactis: incorporation experiments with 13 C-labeled glucose. Insect Biochem Mol Biol 45:51–57

    Article  CAS  PubMed  Google Scholar 

  • Simonsen V, Krogh PH, Filser J, Fjellberg A (1999) Three species of Isotoma (Collembola, Isotomidae) based on morphology, isozymes and ecology. Zool Scr 28:281–287

    Article  Google Scholar 

  • Simopoulos AP (2006) Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed Pharmacother 60:502–507

    Article  CAS  PubMed  Google Scholar 

  • Simpson SJ, Raubenheimer D (2001) A framework for the study of macronutrient intake in fish. Aquac Res 32:421–432

    Article  CAS  Google Scholar 

  • Simpson SJ, Sibly RM, Lee KP, Behmer ST, Raubenheimer D (2004) Optimal foraging when regulating intake of multiple nutrients. Anim Behav 68:1299–1311

    Article  Google Scholar 

  • Stanley-Samuelson DW, Loher W (1986) Prostaglandins in insect reproduction. Ann Entomol Soc Am 79:841–853

    Article  CAS  Google Scholar 

  • Stanley-Samuelson DW, Jurenka RA, Blomquist GJ, Loher W (1987) Sexual transfer of prostaglandin precursor in the field cricket, Teleogryllus commodus. Physiol Entomol 12:347–354

    Article  CAS  Google Scholar 

  • Stanley-Samuelson DW, Jurenka RA, Cripps C, Blomquist GJ, de Renobales M (1988) Fatty acids in insects: composition, metabolism, and biological significance. Arch Insect Biochem Physiol 9:1–33

    Article  CAS  Google Scholar 

  • Stevens MI, Fjellberg A, Greenslade P, Hogg ID, Sunnucks P (2006) Redescription of the Antarctic springtail Desoria klovstadi using morphological and molecular evidence. Polar Biol 29:820–830

    Article  Google Scholar 

  • Strong FE (1963) Fatty acids: in vivo synthesis by the green peach aphid, Myzus persicae (Sulzer). Science 140:983–984

    Article  CAS  PubMed  Google Scholar 

  • Van Dooremalen C, Suring W, Ellers J (2011) Fatty acid composition and extreme temperature tolerance following exposure to fluctuating temperatures in a soil arthropod. J Insect Physiol 57:1267–1273

    Article  PubMed  Google Scholar 

  • Van Emden HF, Eastop VF, Hughes RD, Way MJ (1969) The ecology of Myzus persicae. Annu Rev Entomol 14:197–270

    Article  Google Scholar 

  • Visser B, Ellers J (2008) Lack of lipogenesis in parasitoids: a review of physiological mechanisms and evolutionary implications. J Insect Physiol 54:1315–1322

    Article  CAS  PubMed  Google Scholar 

  • Visser B, Le Lann C, den Blanken FJ, Harvey JA, van Alphen JJ, Ellers J (2010) Loss of lipid synthesis as an evolutionary consequence of a parasitic lifestyle. Proc Natl Acad Sci 107:8677–8682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogt J, Yang J.W, Mobascher A et al (2016) Molecular cause and functional impact of altered synaptic lipid signaling due to a prg-1 gene SNP. EMBO Mol Med 8: 25–38

  • Wallis JG, Watts JL, Browse J (2002) Polyunsaturated fatty acid synthesis: what will they think of next? Trends Biochem Sci 27:467–473

    Article  CAS  PubMed  Google Scholar 

  • Walters D, Raynor L, Mitchell A, Walker R, Walker K (2004) Antifungal activities of four fatty acids against plant pathogenic fungi. Mycopathologia 157:87–90

    Article  PubMed  Google Scholar 

  • Watanabe T, Katayama S, Enoki M, Honda Y, Kuwahara M (2000) Formation of acyl radical in lipid peroxidation of linoleic acid by manganese-dependent peroxidase from Ceriporiopsis subvermispora and Bjerkandera adusta. Eur J Biochem 267:4222–4231

    Article  CAS  PubMed  Google Scholar 

  • Weinert J, Blomquist GJ, Borgeson CE (1993) De novo biosynthesis of linoleic acid in two non-insect invertebrates: the land slug and the garden snail. Cell Mol Life Sci 49:919–921

    Article  CAS  Google Scholar 

  • Wharton DRA, Lola JE (1970) Blood conditions and lysozyme action in the aposymbiotic cockroach. J Insect Physiol 16:199–209

    Article  CAS  Google Scholar 

  • Zhang Z, Decker EA, McClements DJ (2014) Encapsulation, protection, and release of polyunsaturated lipids using biopolymer-based hydrogel particles. Food Res Int 64:520–526

    Article  CAS  Google Scholar 

  • Zhou XR, Horne I, Damcevski K, Haritos V, Green A, Singh S (2008) Isolation and functional characterization of two independently-evolved fatty acid Δ12-desaturase genes from insects. Insect Mol Biol 17:667–676

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Matty P. Berg (Vrije Universiteit of Amsterdam, the Netherlands), Vladimír Šustr (University of South Bohemia in České Budějovice, Czech Republic), Anton Potapov (Lomonosov Moscow State University, Russia) and Martin Holmstrup (Aarhus University, Belgium) for providing us with Collembolan species and Marijke Wagner (Vrije Universiteit of Amsterdam, the Netherlands) for cultivating yeast. Research was supported by grant from The Netherlands Organization for Scientific Research [NWO, VICI grant 865.12.003].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriama Malcicka.

Electronic supplementary material

ESM 1

(DOCX 17 kb)

ESM 2

(DOCX 712 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malcicka, M., Ruther, J. & Ellers, J. De novo Synthesis of Linoleic Acid in Multiple Collembola Species. J Chem Ecol 43, 911–919 (2017). https://doi.org/10.1007/s10886-017-0878-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-017-0878-0

Keywords

Navigation