Journal of Chemical Ecology

, Volume 43, Issue 9, pp 843–857 | Cite as

The Scent Chemistry of Heliconius Wing Androconia

  • Florian Mann
  • Sohini Vanjari
  • Neil Rosser
  • Sandra Mann
  • Kanchon K. Dasmahapatra
  • Chris Corbin
  • Mauricio Linares
  • Carolina Pardo-Diaz
  • Camilo Salazar
  • Chris Jiggins
  • Stefan SchulzEmail author


Neotropical Heliconius butterflies are members of various mimicry rings characterized by diverse colour patterns. In the present study we investigated whether a similar diversity is observed in the chemistry of volatile compounds present in male wing androconia. Recent research has shown that these androconia are used during courting of females. Three to five wild-caught male Heliconius individuals of 17 species and subspecies were analyzed by GC/MS. Most of the identified compounds originate from common fatty acids precursors, including aldehydes, alcohols, acetates or esters preferentially with a C18 and C20 chain, together with some alkanes. The compounds occurred in species-specific mixtures or signatures. For example, octadecanal is characteristic for H. melpomene, but variation in composition between the individuals was observed. Cluster analysis of compound occurrence in individual bouquets and analyses based on biosynthetic motifs such as functional group, chain length, or basic carbon-backbone modification were used to reveal structural patterns. Mimetic pairs contain different scent bouquets, but also some compounds in common, whereas sympatric species, both mimetic and non-mimetic, have more distinct compound compositions. The compounds identified here may play a role in mate choice thus helping maintain species integrity in a butterfly genus characterized by pervasive interspecific gene flow.


Pheromones Mimicry Male butterflies Biosynthesis Aldehydes Alcohols 



CS, CPD and ML were funded by the FIUR fund QDN-DG001. CC was funded by a Smithsonian Tropical Research Institute short term fellowship and the Torkel Weis-Fogh and Balfour-Browne Funds. CJ was funded by an ERC grant ‘SpeciationGenetics’ 339873.

Supplementary material

10886_2017_867_MOESM1_ESM.pdf (2.6 mb)
ESM 1 (PDF 2686 kb)
10886_2017_867_MOESM2_ESM.xls (140 kb)
ESM 2 (XLS 140 kb)


  1. Albre J, Liénard MA, Sirey TM, Schmidt S, Tooman LK, Carraher C, Greenwood DR, Löfstedt C, Newcomb RD (2012) Sex pheromone evolution is associated with differential regulation of the same desaturase gene in two genera of leafroller moths. PLoS Genet 8:e1002489CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andersson J, Borg-Karlson AK, Wiklund C (2000) Sexual cooperation and conflict in butterflies: a male-transferred anti-aphrodisiac reduces harassment of recently mated females. Proc R Soc Lond B 267:1271–1275CrossRefGoogle Scholar
  3. Ando T, Inomata S-I, Yamamoto M (2004) Lepidopteran sex pheromones. In: Schulz S (ed) The chemistry of pheromones and other Semiochemicals I. Springer, Berlin Heidelberg, pp 51–96CrossRefGoogle Scholar
  4. Bacquet PMB, Brattström O, Wang H-L, Allen CE, Löfstedt C, Brakefield PM, Nieberding CM (2015) Selection on male sex pheromone composition contributes to butterfly reproductive isolation. Proc R Soc Lond B 282:20142734CrossRefGoogle Scholar
  5. Bates HW (1862) Contributions to an insect fauna of the Amazon valley. Lepidoptera: Heliconidae. Trans Linn Soc London 23:495–566CrossRefGoogle Scholar
  6. Becker HGO, Beckert R (2004) Organikum: Organisch-chemisches Grundpraktikum, 22nd edn. Wiley-VCH, Weinheim, p 540Google Scholar
  7. Becker LC, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler D, Marks JG, Shank RC, Slaga TJ, Snyder PW, Andersen FA (2012) Safety assessment of alkyl benzoates as used in cosmetics. Int J Toxicol 31:342S–372SCrossRefGoogle Scholar
  8. Beltrán M, Jiggins CD, Brower AVZ, Bermingham E, Mallet JLB (2007) Do pollen feeding, pupal mating and larval gregariousness have a single origin in Heliconius butterflies? Inferences from multilocus DNA sequence data. Biol J Linn Soc 92:221–239CrossRefGoogle Scholar
  9. Bestmann HJ, Kern F, Schäfer D, Witschel MC (1992) 3,4-Dihydroisocoumarins, a new class of Ant Trail pheromones. Angew Chem Int Ed 31:795–796CrossRefGoogle Scholar
  10. Blomberg SP, Garland T Jr, Ives AR, Crespi B (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745CrossRefPubMedGoogle Scholar
  11. Buser HR, Arn H, Guerin P, Rauscher S (1983) Determination of double bond position in mono-unsaturated acetates by mass spectrometry of dimethyl disulfide adducts. Anal Chem 55:818–822CrossRefGoogle Scholar
  12. Chouteau M, Arias M, Joron M (2016) Warning signals are under positive frequency-dependent selection in nature. Proc Natl Acad Sci U S A 113:2164–2169CrossRefPubMedPubMedCentralGoogle Scholar
  13. Davey JW, Chouteau M, Barker SL, Maroja L, Baxter SW, Simpson F, Joron M, Mallet J, Dasmahapatra KK, Jiggins CD (2016) Major improvements to the Heliconius melpomene genome assembly used to confirm 10 chromosome fusion events in 6 million years of butterfly evolution. G3:g3-115Google Scholar
  14. Ðorđević BS, Pljevljakušić DS, Šavikin KP, Stević TR, Bigović DJ (2014) Essential oil from blackcurrant buds as chemotaxonomy marker and antimicrobial agent. Chem Biodivers 11:1228–1240CrossRefPubMedGoogle Scholar
  15. Eisner J, Meinwald J (1987) Alkaloid-derived pheromones and sexual selection in Lepidoptera. Pheromone Biochemistry. Academic Press, OrlandoGoogle Scholar
  16. Estrada C, Jiggins CD (2008) Interspecific sexual attraction because of convergence in warning colouration: is there a conflict between natural and sexual selection in mimetic species? J Evol Biol 21:749–760CrossRefPubMedGoogle Scholar
  17. Estrada C, Yildizhan S, Schulz S, Gilbert LE (2010) Sex-specific chemical cues from immatures facilitate the evolution of mate guarding in Heliconius butterflies. Proc R Soc Lond B 277:407–413CrossRefGoogle Scholar
  18. Estrada C, Schulz S, Yildizhan S, Gilbert LE (2011) Sexual selection drives the evolution of antiaphrodisiac pheromones in butterflies. Evolution 65:2843–2854CrossRefPubMedGoogle Scholar
  19. Francke W, Schulz S, Sinnwell V, König WA, Roisin Y (1989) Epoxytetrahydroedulan, a New Terpenoid from the Hairpencils of Euploea (Lep.: Danainae) Butterflies. Liebigs Ann Chem:1195–1201Google Scholar
  20. Friendly M, Fox J, Friendly MM (2016) candisc: Visualizing generalized canonical discriminant and canonical correlation analysis. R package version 0.7-2Google Scholar
  21. Gilbert LE (1976) Postmating female odor in Heliconius butterflies: a male-contributed antiaphrodisiac? Science 193:419–420CrossRefPubMedGoogle Scholar
  22. Giraldo N, Salazar C, Jiggins CD, Bermingham E, Linares M (2008) Two sisters in the same dress: Heliconius cryptic species. BMC Evol Biol 8:324CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hammer Ø, Harper DA, Ryan PD (2001) PAST-palaeontological statistics, ver. 1.89. Palaeontol. electronica 4Google Scholar
  24. Honda Y, Honda K, Omura H (2006) Major components in the hairpencil secretion of a butterfly, Euploea mulciber (Lepidoptera, Danaidae): their origins and male behavioral responses to pyrrolizidine alkaloids. J Insect Physiol 52:1043–1053CrossRefPubMedGoogle Scholar
  25. Jiggins CD (2008) Ecological speciation in mimetic butterflies. Bioscience 58:541–548CrossRefGoogle Scholar
  26. Kozak KM, Wahlberg N, Neild AFE, Dasmahapatra KK, Mallet J, Jiggins CD (2015) Multilocus species trees show the recent adaptive radiation of the mimetic Heliconius butterflies. Syst Biol 64:505–524CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kunesch G, Zagatti P, Pouvreau A, Cassini R (1987) A fungal metabolite as the male wing gland pheromone of the bumble-bee wax moth, Aphomia sociella L. Z Naturforsch 42c:657–659Google Scholar
  28. Lassance J-M, Liénard MA, Antony B, Qian S, Fujii T, Tabata J, Ishikawa Y, Löfstedt C (2013) Functional consequences of sequence variation in the pheromone biosynthetic gene pgFAR for Ostrinia moths. Proc Natl Acad Sci U S A 110:3967–3972CrossRefPubMedPubMedCentralGoogle Scholar
  29. Liénard MA, Wang H-L, Lassance J-M, Löfstedt C (2014) Sex pheromone biosynthetic pathways are conserved between moths and the butterfly Bicyclus anynana. Nat Commun 5:3957CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mallet J, Barton NH (1989) Strong natural selection in a warning-color hybrid zone. Evolution 43:421–431CrossRefPubMedGoogle Scholar
  31. McMillan WO, Jiggins CD, Mallet J (1997) What initiates speciation in passion-vine butterflies? Proc Natl Acad Sci U S A 94:8628–8633CrossRefPubMedPubMedCentralGoogle Scholar
  32. Meinwald J, Meinwald YC, Wheeler JW, Eisner T, Brower LP (1966) Major components in the exocrine secretion of a male butterfly Lycorea. Science 151:583–585CrossRefPubMedGoogle Scholar
  33. Mérot C, Mavárez J, Evin A, Dasmahapatra KK, Mallet J, Lamas G, Joron M (2013) Genetic differentiation without mimicry shift in a pair of hybridizing Heliconius species (Lepidoptera: Nymphalidae). Biol J Linn Soc 109:830–847CrossRefGoogle Scholar
  34. Mérot C, Frérot B, Leppik E, Joron M (2015) Beyond magic traits: multimodal mating cues in Heliconius butterflies. Evolution 69:2891–2904CrossRefPubMedGoogle Scholar
  35. Merrill RM, van Schooten B, Scott JA, Jiggins CD (2011) Pervasive genetic associations between traits causing reproductive isolation in Heliconius butterflies. Proc R Soc Lond B 278:511–518CrossRefGoogle Scholar
  36. Merrill RM, Naisbit RE, Mallet J, Jiggins CD (2013) Ecological and genetic factors influencing the transition between host-use strategies in sympatric Heliconius butterflies. J Evol Biol 26:1959–1967CrossRefPubMedGoogle Scholar
  37. Merrill RM, Dasmahapatra KK, Davey JW, Dell'Aglio DD, Hanly JJ, Huber B, Jiggins CD, Joron M, Kozak KM, Llaurens V (2015) The diversification of Heliconius butterflies: what have we learned in 150 years? J Evol Biol 28:1417–1438CrossRefPubMedGoogle Scholar
  38. Miyakado M, Meinwald J, Gilbert LE (1989) (R)-(Z,E)-9,11-Octadecadienolide: an intriguing lactone from Heliconius pachinus (Lepidoptera). Experientia 45:1006–1008CrossRefPubMedGoogle Scholar
  39. More JD, Finney NS (2002) A simple and advantageous protocol for the oxidation of alcohols with o-iodoxybenzoic acid (IBX). Org Lett 4:3001–3003CrossRefPubMedGoogle Scholar
  40. Morgan ED (2010) Biosynthesis in insects, 2nd edn. Royal Society of Chemistry, CambridgeGoogle Scholar
  41. Muñoz AG, Salazar C, Castaño J, Jiggins CD, Linares M (2010) Multiple sources of reproductive isolation in a bimodal butterfly hybrid zone. J Evol Biol 23:1312–1320CrossRefPubMedGoogle Scholar
  42. Nieberding CM, de Vos H, Schneider MV, Lassance J-M, Estramil N, Andersson J, Bång J, Hedenström E, Löfstedt C, Brakefield PM, Somers M (2008) The male sex pheromone of the butterfly Bicyclus anynana: towards an evolutionary analysis. PLoS One 3:e2751CrossRefPubMedPubMedCentralGoogle Scholar
  43. Nieberding CM, Fischer K, Saastamoinen M, Allen CE, Wallin EA, Hedenström E, Brakefield PM (2012) Cracking the olfactory code of a butterfly: the scent of ageing. Ecol Lett 15:415–424CrossRefPubMedGoogle Scholar
  44. Nishida R, Baker TC, Roelofs WL (1982) Hairpencil pheromone components of male oriental fruit moths, Grapholita molesta. J Chem Ecol 8:947–959CrossRefPubMedGoogle Scholar
  45. Nishida R, Schulz S, Kim CS, Fukami H, Kuwahara Y, Honda K, Hayashi N (1996) Male sex pheromone of a giant danaine butterfly, Idea leuconoe. J Chem Ecol 22:949–972CrossRefPubMedGoogle Scholar
  46. Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884CrossRefPubMedGoogle Scholar
  47. Pankewitz F, Hilker M (2008) Polyketides in insects: ecological role of these widespread chemicals and evolutionary aspects of their biogenesis. Biol Rev 83:209–226CrossRefPubMedGoogle Scholar
  48. Pinheiro J, Bates D, DebRoy S, Sarkar D and R Core Team (2017) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-131Google Scholar
  49. Pliske TE, Eisner T (1969) Sex pheromone of the queen butterfly: biology. Science 164:1170–1172CrossRefPubMedGoogle Scholar
  50. Revell LJ (2012) Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223CrossRefGoogle Scholar
  51. Rosser N, Phillimore AB, Huertas B, Willmott KR, Mallet J (2012) Testing historical explanations for gradients in species richness in heliconiine butterflies of tropical America. Biol J Linn Soc 105:479–497CrossRefGoogle Scholar
  52. Schulz S (1987) Die Chemie der Duftorgane männlicher Lepidopteren. Dissertation, University of Hamburg, HamburgGoogle Scholar
  53. Schulz S (2001) Composition of the silk lipids of the spider Nephila clavipes. Lipids 36:637–647CrossRefPubMedGoogle Scholar
  54. Schulz S, Francke W, Boppré M (1988a) Carboxylic acids from hairpencils of male Amauris butterflies (Lep.: Danainae). Biol Chem Hoppe Seyler 369:633–638CrossRefPubMedGoogle Scholar
  55. Schulz S, Francke W, Edgar JA, Schneider D (1988b) Volatile compounds from Androconial organs of Danaine and Ithomiine butterflies. Z Naturforsch sect C. J Biosci 43c:99–104Google Scholar
  56. Schulz S, Beccaloni G, Nishida R, Roisin YR, Vane-Wright I, McNeil JN (1998) 2,5-Dialkyltetrahydrofurans, common components of the cuticular lipids of Lepidoptera. Z Naturforsch 53c:107–116Google Scholar
  57. Schulz S, Beccaloni G, Brown KS Jr, Boppre M, Freitas AVL, Ockenfels P, Trigo JR (2004) Semiochemicals derived from pyrrolizidine alkaloids in male ithomiine butterflies (Lepidoptera: Nymphalidae Ithomiinae). Biochem Syst Ecol 32:699–713CrossRefGoogle Scholar
  58. Schulz S, Yildizhan S, Stritzke K, Estrada C, Gilbert LE (2007) Macrolides from the scent glands of the tropical butterflies Heliconius cydno and Heliconius pachinus. Org Biomol Chem 5:3434–3441CrossRefPubMedGoogle Scholar
  59. Schulz S, Estrada C, Yildizhan S, Boppré M, Gilbert LE (2008) An antiaphrodisiac in Heliconius melpomene butterflies. J Chem Ecol 34:82–93CrossRefPubMedGoogle Scholar
  60. Schulz S, Yildizhan S, van Loon JJA (2011) The biosynthesis of hexahydrofarnesylacetone in the butterfly Pieris brassicae. J Chem Ecol 37:360–363CrossRefPubMedGoogle Scholar
  61. Schwander T, Arbuthnott D, Gries R, Gries G, Nosil P, Crespi B (2013) Hydrocarbon divergence and reproductive isolation in Timema stick insects. BMC Evol Biol 13:151CrossRefPubMedPubMedCentralGoogle Scholar
  62. Takahashi A, Tsaur S-C, Coyne JA, Wu CI (2001) The nucleotide changes governing cuticular hydrocarbon variation and their evolution in Drosophila melanogaster. Proc Natl Acad Sci U S A 98:3920–3925CrossRefPubMedPubMedCentralGoogle Scholar
  63. Turner JRG (1976) Adaptive radiation and convergence in subdivisions of the butterfly genus Heliconius (Lepidoptera: Nymphalidae). Zool J Linnean Soc 58:297–308CrossRefGoogle Scholar
  64. Wang H-L, Brattström O, Brakefield PM, Francke W, Löfstedt C (2014) Identification and biosynthesis of novel male specific esters in the wings of the tropical butterfly, Bicyclus martius sanaos. J Chem Ecol 40:549–559CrossRefPubMedPubMedCentralGoogle Scholar
  65. Yildizhan S, van Loon J, Sramkova A, Ayasse M, Arsene C, ten Broeke C, Schulz S (2009) Aphrodisiac pheromones from the wings of the small cabbage white and large cabbage white butterflies, Pieris rapae and Pieris brassicae. Chembiochem 10:1666–1677CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Florian Mann
    • 1
  • Sohini Vanjari
    • 2
  • Neil Rosser
    • 3
  • Sandra Mann
    • 1
  • Kanchon K. Dasmahapatra
    • 3
  • Chris Corbin
    • 4
  • Mauricio Linares
    • 5
  • Carolina Pardo-Diaz
    • 5
  • Camilo Salazar
    • 5
  • Chris Jiggins
    • 2
  • Stefan Schulz
    • 1
    Email author
  1. 1.Institute of Organic ChemistryTechnische Universität BraunschweigBraunschweigGermany
  2. 2.Department of ZoologyUniversity of CambridgeCambridgeUK
  3. 3.Department of BiologyUniversity of YorkYorkUK
  4. 4.Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUK
  5. 5.Biology Program, Faculty of Natural Sciences and MathematicsUniversidad del RosarioBogotá D.C.Colombia

Personalised recommendations