Advertisement

Journal of Chemical Ecology

, Volume 43, Issue 4, pp 339–350 | Cite as

Volatile-Mediated Interactions between Cabbage Plants in the Field and the Impact of Ozone Pollution

  • Patricia Sarai Giron-Calva
  • Tao Li
  • James D. Blande
Article

Abstract

Plants constitutively release volatile organic compounds (VOCs), but qualitatively and quantitatively alter their emission of VOCs in response to biotic and abiotic stresses. The blend of VOCs emitted reflects the physiological status of the plant. Plants may be exposed to the VOC blend emitted by their near neighbors and gain information that allows them to adjust their own defenses. These plant-plant interactions may potentially be exploited to protect crops from pests, but they can be disturbed by abiotic factors making the process sensitive to environmental perturbation. Despite numerous studies describing plant-plant interactions, relatively few have been conducted with agriculturally significant cultivated plant varieties under field conditions. Here we studied plant-plant interactions in a conspecific association of Brassica oleracea var. capitata (cabbage) and show that undamaged plants exposed to neighbors damaged by the herbivore Pieris brassicae are primed for stronger volatile emissions upon subsequent herbivore attack. We conducted a field study in an ozone free-air concentration enrichment (FACE) facility with ambient and elevated ozone levels and found that elevated tropospheric ozone significantly alters the priming of VOCs in receiver plants. We conclude that plant-plant interactions may prime defensive attributes of receiver plants under field conditions, but are impaired by ozone pollution. Therefore, when planning the manipulation of plant-plant interactions for agricultural purposes, the potential effects of atmospheric pollutants should be considered.

Keywords

Brassica oleracea Plant volatiles VOCs Plant-plant communication Priming Tropospheric ozone 

Notes

Acknowledgments

We thank Timo Oksanen, Marjatta Puurunen and Topi Kuronen for providing technical support. This research was supported by the Academy of Finland decision numbers 256050, 251898 and 283122.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10886_2017_836_MOESM1_ESM.docx (99 kb)
ESM 1 (DOCX 98 kb)

References

  1. Arimura G, Tashiro K, Kuhara S, Nishioka T, Ozawa R, Takabayashi J (2000) Gene responses in bean leaves induced by herbivory and by herbivore-induced volatiles. Biochem Biophys Res Commun 277:305–310. doi: 10.1006/bbrc.2000.3672 CrossRefPubMedGoogle Scholar
  2. Blande JD, Holopainen JK, Li T (2010) Air pollution impedes plant-to-plant communication by volatiles. Ecol Lett 13:1172–1181. doi: 10.1111/j.1461-0248.2010.01510.x CrossRefPubMedGoogle Scholar
  3. Blande JD, Holopainen JK, Niinemets Ü (2014) Plant volatiles in polluted atmospheres: stress responses and signal degradation. Plant Cell Environ 37:1892–1904. doi: 10.1111/pce.12352 CrossRefPubMedPubMedCentralGoogle Scholar
  4. De Moraes C, Mescher M, Tumlinson J (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577–580. doi: 10.1038/35069058 CrossRefPubMedGoogle Scholar
  5. Egigu MC, Ibrahim MA, Yahya A, Holopainen JK (2010) Yeheb (Cordeauxia edulis) extract deters feeding and oviposition of Plutella xylostella and attracts its natural enemy. BioControl 55:613–624. doi: 10.1007/s10526-010-9287-9 CrossRefGoogle Scholar
  6. Egigu MC, Ibrahim MA, Yahya A, Holopainen JK (2011) Cordeauxia edulis and Rhododendron tomentosum extracts disturb orientation and feeding behavior of Hylobius abietis and Phyllodecta laticollis. Entomol Exp Appl 138:162–174. doi: 10.1111/j.1570-7458.2010.01082.x CrossRefGoogle Scholar
  7. Engelberth J, Alborn H, Schmelz E, Tumlinson J (2004) Airborne signals prime plants against insect herbivore attack. P Natl Acad Sci USA 101:1781–1785. doi: 10.1073/pnas.0308037100 CrossRefGoogle Scholar
  8. Evans N, McAinsh M, Hetherington A, Knight M (2005) ROS perception in Arabidopsis thaliana: the ozone-induced calcium response. Plant J 41:615–626. doi: 10.1111/j.1365-313X.2004.02325.x CrossRefPubMedGoogle Scholar
  9. Farré-Armengol G, Peñuelas J, Li T, Yli-Pirilä P, Filella I, Llusia J, Blande JD (2016) Ozone degrades floral scent and reduces pollinator attraction to flowers. New Phytol 209:152–160. doi: 10.1111/nph.13620 CrossRefPubMedGoogle Scholar
  10. Fuentes JD, Roulston TH, Zenker J (2013) Ozone impedes the ability of a herbivore to find its host. Environ Res Lett 8:014048. doi: 10.1088/1748-9326/8/1/014048 CrossRefGoogle Scholar
  11. Furlong MJ, Wright DJ, Dosdall LM (2013) Diamondback moth ecology and management: problems, progress, and prospects. Annu Rev Entomol 58:517–541. doi: 10.1146/annurev-ento-120811-153605 CrossRefPubMedGoogle Scholar
  12. Geneau CE, Wackers FL, Luka H, Daniel C, Balmer O (2012) Selective flowers to enhance biological control of cabbage pests by parasitoids. Basic Appl Ecol 13:85–93. doi: 10.1016/j.baae.2011.10.005 CrossRefGoogle Scholar
  13. Girling RD, Lusebrink I, Farthing E, Newman TA, Poppy GM (2013) Diesel exhaust rapidly degrades floral odours used by honeybees. Sci Rep 3:2779CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hasan F, Ansari MS (2011) Effects of different brassicaceous host plants on the fitness of Pieris brassicae (L.) Crop Prot 30:854–862. doi: 10.1016/j.cropro.2011.02.024 CrossRefGoogle Scholar
  15. Heil M, Adame-Álvarez RM (2010) Short signalling distances make plant communication a soliloquy. Biol Lett 6:843–845. doi: 10.1098/rsbl.2010.0440 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Heil M, Karban R (2010) Explaining evolution of plant communication by airborne signals. Trends Ecol Evol 25:137–144. doi: 10.1016/j.tree.2009.09.010 CrossRefPubMedGoogle Scholar
  17. Heil M, Silva Bueno JC (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. P Natl Acad Sci USA 104:5467–5472. doi: 10.1073/pnas.0610266104 CrossRefGoogle Scholar
  18. Himanen SJ, Blande JD, Klemola T, Pulkkinen J, Heijari J, Holopainen JK (2010) Birch (Betula spp.) leaves adsorb and re-release volatiles specific to neighbouring plants - a mechanism for associational herbivore resistance? New Phytol 186:722–732. doi: 10.1111/j.1469-8137.2010.03220.x CrossRefPubMedGoogle Scholar
  19. Himanen SJ, Bui TNT, Maja MM, Holopainen JK (2015) Utilizing associational resistance for biocontrol: impacted by temperature, supported by indirect defence. BMC Ecol 15:16. doi: 10.1186/s12898-015-0048-6 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Holopainen JK, Blande JD (2013) Where do herbivore-induced plant volatiles go? Front Plant Sci 4:185. doi: 10.3389/fpls.2013.00185 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Holopainen JK, Gershenzon J (2010) Multiple stress factors and the emission of plant VOCs. Trends Plant Sci 15:176–184. doi: 10.1016/j.tplants.2010.01.006 CrossRefPubMedGoogle Scholar
  22. Kaplan I (2012) Attracting carnivorous arthropods with plant volatiles: the future of biocontrol or playing with fire? Biol Control 60:77–89CrossRefGoogle Scholar
  23. Karban R, Shiojiri K, Huntzinger M, McCall A (2006) Damage-induced resistance in sagebrush: volatiles are key to intra- and interplant communication. Ecology 87:922–930. doi: 10.1890/0012-9658(2006)87[922:DRISVA]2.0.CO;2 CrossRefPubMedGoogle Scholar
  24. Karban R, Yang LH, Edwards KF (2014) Volatile communication between plants that affects herbivory: a meta-analysis. Ecol Lett 17:44–52. doi: 10.1111/ele.12205 CrossRefPubMedGoogle Scholar
  25. Karnosky DF, Werner H, Holopainen T, Percy K, Oksanen T, Oksanen E, Heerdt C, Fabian P, Nagy J, Heilman W, Cox R, Nelson N, Matyssek R (2007) Free-air exposure systems to scale up ozone research to mature trees. Plant Biol 9:181–190. doi: 10.1055/s-2006-955915 CrossRefPubMedGoogle Scholar
  26. Kessler A, Baldwin I (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144. doi: 10.1126/science.291.5511.2141 CrossRefPubMedGoogle Scholar
  27. Khaling E, Li T, Holopainen J, Blande J (2016) Elevated ozone modulates herbivore-induced volatile emissions of Brassica nigra and alters a tritrophic interaction. J Chem Ecol 42(5):368–381. doi: 10.1007/s10886-016-0697-8 CrossRefPubMedGoogle Scholar
  28. Khaling E, Papazian S, Poelman EH, Holopainen JK, Albrectsen BR, Blande JD (2015) Ozone affects growth and development of Pieris brassicae on the wild host plant Brassica nigra. Environ Pollut 199:119–129. doi: 10.1016/j.envpol.2015.01.019 CrossRefPubMedGoogle Scholar
  29. Kollist T, Moldau H, Rasulov B, Oja V, Ramma H, Huve K, Jaspers P, Kangasjärvi J, Kollist H (2007) A novel device detects a rapid ozone-induced transient stomatal closure in intact arabidopsis and its absence in abi2 mutant. Physiol Plantarum 129:796–803. doi: 10.1111/j.1399-3054.2006.00851.x CrossRefGoogle Scholar
  30. Li T, Blande JD (2015) Associational susceptibility in broccoli: mediated by plant volatiles, impeded by ozone. Glob Change Biol 21:1993–2004. doi: 10.1111/gcb.12835 CrossRefGoogle Scholar
  31. Lusebrink I, Girling RD, Farthing E, Newman TA, Jackson CW, Poppy GM (2015) The effects of diesel exhaust pollution on floral volatiles and the consequences for honey bee olfaction. J Chem Ecol 41:904–912. doi: 10.1007/s10886-015-0624-4 CrossRefPubMedGoogle Scholar
  32. McFrederick QS, Fuentes JD, Roulston T, Kathilankal JC, Lerdau M (2009) Effects of air pollution on biogenic volatiles and ecological interactions. Oecologia 160:411–420. doi: 10.1007/s00442-009-1318-9 CrossRefPubMedGoogle Scholar
  33. McFrederick QS, Kathilankal JC, Fuentes JD (2008) Air pollution modifies floral scent trails. Atmos Environ 42:2336–2348. doi: 10.1016/j.atmosenv.2007.12.033 CrossRefGoogle Scholar
  34. Morawo T, Fadamiro H (2014) Attraction of two larval parasitoids with varying degree of host specificity to single components and a binary mixture of host-related plant volatiles. Chemoecology 24:127–135. doi: 10.1007/s00049-014-0154-5 CrossRefGoogle Scholar
  35. Paoletti E, De Marco A, Beddows DCS, Harrison RM, Manning WJ (2014) Ozone levels in european and USA cities are increasing more than at rural sites, while peak values are decreasing. Environ Pollut 192:295–299. doi: 10.1016/j.envpol.2014.04.040 CrossRefPubMedGoogle Scholar
  36. Peng J, van Loon JJA, Zheng S, Dicke M (2011) Herbivore-induced volatiles of cabbage (Brassica oleracea) prime defence responses in neighbouring intact plants. Plant Biol 13:276–284. doi: 10.1111/j.1438-8677.2010.00364.x CrossRefPubMedGoogle Scholar
  37. Pinto DM, Blande JD, Souza SR, Nerg AM, Holopainen JK (2010) Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: the ecological effects. J Chem Ecol 36:22–34. doi: 10.1007/s10886-009-9732-3 CrossRefPubMedGoogle Scholar
  38. Pinto DM, Himanen SJ, Nissinen A, Nerg AM, Holopainen JK (2008) Host location behavior of Cotesia plutellae kurdjumov (hymenoptera: Braconidae) in ambient and moderately elevated ozone in field conditions. Environ Pollut 156:227–231. doi: 10.1016/j.envpol.2007.12.009 CrossRefPubMedGoogle Scholar
  39. Pinto DM, Tiiva P, Miettinen P, Joutsensaari J, Kokkola H, Nerg AM, Laaksonen A, Holopainen JK (2007) The effects of increasing atmospheric ozone on blogenic monoterpene profiles and the formation of secondary aerosols. Atmos Environ 41:4877–4887. doi: 10.1016/j.atmosenv.2007.02.006 CrossRefGoogle Scholar
  40. Ponzio C, Gols R, Weldegergis BT, Dicke M (2014) Caterpillar-induced plant volatiles remain a reliable signal for foraging wasps during dual attack with a plant pathogen or non-host insect herbivore. Plant Cell Environ 37:1924–1935. doi: 10.1111/pce.12301 CrossRefPubMedGoogle Scholar
  41. Quintana-Rodriguez E, Morales-Vargas AT, Molina-Torres J, Adame-Álvarez RM, Acosta-Gallegos JA, Heil M (2015) Plant volatiles cause direct, induced and associational resistance in common bean to the fungal pathogen Colletotrichum lindemuthianum. J Ecol 103:250–260. doi: 10.1111/1365-2745.12340 CrossRefGoogle Scholar
  42. Smid H, van Loon J, Posthumus M, Vet L (2002) GC-EAG-analysis of volatiles from Brussels sprouts plants damaged by two species of Pieris caterpillars: olfactory receptive range of a specialist and a generalist parasitoid wasp species. Chemoecology 12:169–176. doi: 10.1007/PL00012665 CrossRefGoogle Scholar
  43. Sugimoto K, Matsui K, Iijima Y, Akakabe Y, Muramoto S, Ozawa R, Uefune M, Sasaki R, Alamgir KM, Akitake S, Nobuke T, Galis I, Aoki K, Shibata D, Takabayashi J (2014) Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. P Natl Acad Sci USA 111:7144–7149. doi: 10.1073/pnas.1320660111 CrossRefGoogle Scholar
  44. Tsao R, Zhou T (2000) Antifungal activity of monoterpenoids against postharvest pathogens Botrytis cinerea and Monilinia fructicola. J Essent Oil Res 12:113–121CrossRefGoogle Scholar
  45. Turlings TCJ, Loughrin JH, Mccall PJ, Rose USR, Lewis WJ, Tumlinson JH (1995) How caterpillar-damaged plants protect themselves by attracting parasitic wasps. P Natl Acad Sci USA 92:4169–4174. doi: 10.1073/pnas.92.10.4169 CrossRefGoogle Scholar
  46. Vuorinen T, Nerg AM, Holopainen JK (2004) Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling. Environ Pollut 131:305–311. doi: 10.1016/j.envpol.2004.02.027 CrossRefPubMedGoogle Scholar
  47. Wilkinson S, Mills G, Illidge R, Davies WJ (2012) How is ozone pollution reducing our food supply? J Exp Bot 63:527–536. doi: 10.1093/jxb/err317 CrossRefPubMedGoogle Scholar
  48. Zebelo SA, Matsui K, Ozawa R, Maffei ME (2012) Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicon) plant-to-plant communication. Plant Sci 196:93–100. doi: 10.1016/j.plantsci.2012.08.006 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Patricia Sarai Giron-Calva
    • 1
  • Tao Li
    • 2
  • James D. Blande
    • 1
  1. 1.Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
  2. 2.Department of Biology, Terrestrial Ecology SectionUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations