Journal of Chemical Ecology

, Volume 43, Issue 2, pp 198–206 | Cite as

Millipede Defensive Compounds Are a Double-Edged Sword: Natural History of the Millipede-Parasitic Genus Myriophora Brown (Diptera: Phoridae)

  • John M. Hash
  • Jocelyn G. Millar
  • John M. Heraty
  • James F. Harwood
  • Brian V. Brown


Toxic defensive secretions produced by millipedes in the orders Julida, Spirobolida, Spirostreptida, and Polydesmida are highly repellent to most vertebrate and invertebrate natural enemies, but a few insects have evolved mechanisms to overcome these defenses. We demonstrate that highly specialized parasitic phorid flies in the species-rich genus Myriophora use volatile millipede defensive compounds as kairomones for host location. Of the two predominant quinone components in the defensive blend of juliform millipedes, 2-methoxy-3-methyl-1,4-benzoquinone alone was sufficient to attract adult flies of both sexes; however, a combination of 2-methoxy-3-methyl-1,4-benzoquinone and 2-methyl-1,4-benzoquinone increased attractiveness nearly threefold. We further discuss oviposition behavior, adult and larval feeding habits, life history parameters, and the potential competitive interactions between phorid flies in the genus Myriophora and other millipede-associated insects.


Kairomone Allomone Diplopoda Parasitoid Host location Chemical ecology Behavior Benzoquinone 



We thank Maosheng Foo and Wei-Song Hwang of National University of Singapore for laboratory and field assistance and helping with collection permits. Emily Hartop assisted with collecting data on attraction of parasitoids to quinones in Singapore. Eduardo Amat organized the Colombia field trip and acquired research permits. The research was funded by the National Geographic Society, the Systematics, Evolution, and Biodiversity section of the Entomological Society of America, and the Center for Integrative Biological Collections at the University of California, Riverside.

Supplementary material

Video 1

(MOV 12999 kb)

10886_2016_815_MOESM2_ESM.xlsx (46 kb)
Table S1 (XLSX 46 kb)


  1. Aldrich JM (1916) Sarcophaga and allies. Thomas Say Foundation, LaFayette, USAGoogle Scholar
  2. Bailey PT (1989) The millipede parasitoid Pelidnoptera nigripennis (F.) (Diptera: Sciomyzidae) for the biological control of the millipede Ommatoiulus moreleti (Lucas) (Diplopoda: Julida: Julidae) in Australia. Bull Entomol Res 79:381–391CrossRefGoogle Scholar
  3. Baker GH (1985) Parasites of the millipede Ommatoiulus moreletii (Lucus) (Diplopoda: Iulidae) in Portugal, and their potential as biological control agents in Australia. Aust J Zool 33:23–32CrossRefGoogle Scholar
  4. Banks N (1911) A curious habit of one of our phorid flies. Proc Entomol Soc Wash 13:212–214Google Scholar
  5. Bedoussac L, Favila M, López R (2007) Defensive volatile secretions of two diplopod species attract the carrion ball roller scarab Canthon morsei (Coleoptera: Scarabaeidae). Chemoecology 17:163–167. doi: 10.1007/s00049-007-0375-y CrossRefGoogle Scholar
  6. Benelli G, Carpita A, Simoncini S, Raspi A, Canale A (2014) For sex and more: attraction of the tephritid parasitoid Psyttalia concolor (Hymenoptera: Braconidae) to male sex pheromone of the olive fruit fly, Bactrocera oleae. J Pest Sci 87:449–457. doi: 10.1007/s10340-014-0595-1
  7. Birkinshaw CR (1999) Use of millipedes by black lemurs to anoint their bodies. Folia Primatol 70:170–171CrossRefPubMedGoogle Scholar
  8. Borgmeier T (1961) Weitere Beitraege zur Kenntnis der neotropischen Phoriden, nebst Beschreibung einiger Dohrniphora-Arten aus der indo-australischen Region (Diptera, Phoridae). Studia Entomologica 4:1–112Google Scholar
  9. Brandão CRF, Diniz JLM, Tomotake EM (1991) Thaumatomyrmex strips millipedes for prey: a novel predatory behaviour in ants, and the first case of sympatry in the genus (Hymenoptera: Formicidae). Insect Soc 38:335–344Google Scholar
  10. Brown BV (1992a) Life history, immature stages and undescribed male of Rhynchomicropteron (Diptera: Phoridae). J Nat Hist 26:407–416CrossRefGoogle Scholar
  11. Brown WL Jr (1992b) Two new species of Gnamptogenys, and an account of millipede predation by one of them. Psyche 99:275–290CrossRefGoogle Scholar
  12. Brown BV (1994) Life history parameters and new host records of phorid (Diptera: Phoridae) parasitoids of fireflies (Coleoptera: Lampyridae). Coleopt Bull 48:145–147Google Scholar
  13. Brown BV (2010) Phoridae (hump-backed flies, scuttle flies). In: Brown BV, Borkent A, Cumming JM, Wood DM, Woodley NE, Zumbado MA (eds) Manual of Central American Diptera, vol 2. NRC Research Press, Ottawa, pp 725–761Google Scholar
  14. Brown BV, Feener DH Jr (1991) Behavior and host location cues of Apocephalus paraponerae (Diptera: Phoridae), a parasitoid of the giant tropical ant, Paraponera clavata (hymenoptera: Formicidae). Biotropica:182–187Google Scholar
  15. Brown BV, Feener DH Jr (1993) Life history and immature stages of Rhyncophoromyia maculineura, an ant-parasitizing phorid fly (Diptera: Phoridae) from Peru. J Nat Hist 27:429–434CrossRefGoogle Scholar
  16. Brues CT (1908) Some new north American Phoridae. J New York Entomol S 16:199–201Google Scholar
  17. Cano EB (1998) Deltochilum Valgum acropyge bates (Coleoptera: Scarabaeidae: Scarabaeinae): habits and distribution. Coleopt Bull 52:174–178Google Scholar
  18. Carreño MC, Ruano JG, Toledo MA, Urbano A (1997) ortho-directed metallation in the regiocontrolled synthesis of enantiopure 2-and/or 3-substituted (S) S-(p-tolylsulfinyl)-1,4-benzoquinones. Tet Asymm 8:913–921CrossRefGoogle Scholar
  19. Cusumano A, Weldegergis BT, Colazza S, Dicke M, Fatouros NM (2015) Attraction of egg-killing parasitoids toward induced plant volatiles in a multi-herbivore context. Oecologia. doi: 10.1007/s00442-015-3325-3 PubMedGoogle Scholar
  20. De Moraes CM, Lewis WJ, Pare PW, Alborn HT, Tumlinson JH (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573CrossRefGoogle Scholar
  21. Dejean A, Suzzoni JP, Schatz B (2001) Behavioral adaptations of an African ponerine ant in the capture of millipedes. Behaviour 138:981–996CrossRefGoogle Scholar
  22. Disney RHL (1994) Scuttle flies: the Phoridae. Chapman and Hall, LondonCrossRefGoogle Scholar
  23. Duffey SS, Blum MS, Fales HM, Evans SL, Roncadori RW, Tiemann DL, Nakagawa Y (1977) Benzoyl cyanide and mandelonitrile benzoate in the defensive secretions of millipedes. J Chem Ecol 3:101–113. doi: 10.1007/BF00988137 CrossRefGoogle Scholar
  24. Eggleton P, Belshaw R (1992) Insect parasitoids: an evolutionary overview. Philos T Roy Soc B 337:1–20CrossRefGoogle Scholar
  25. Eisner T, Alsop D, Hicks K, Meinwald J (1978) Defensive secretions of millipedes. In: Arthropod venoms. Springer, Berlin, pp 41–72Google Scholar
  26. Eisner T, Eisner M, Attygalle AB, Deyrup M, Meinwald J (1998) Rendering the inedible edible: circumvention of a millipede’s chemical defense by a predaceous beetle larva (Phengodidae). Proc Natl Acad Sci USA 95:1108–1113Google Scholar
  27. Eisner T, Eisner M, Siegler MV (2005) Secret weapons: defenses of insects, spiders, scorpions, and other many-legged creatures. Harvard University Press, CambridgeGoogle Scholar
  28. Feener DH Jr, Brown BV (1997) Diptera as parasitoids. Annu Rev Entomol 42:73–97CrossRefPubMedGoogle Scholar
  29. Forthman M, Weirauch C (2012) Toxic associations: a review of the predatory behaviors of millipede assassin bugs (Hemiptera: Reduviidae: Ectrichodiinae). Eur J Entomol 109:147–153CrossRefGoogle Scholar
  30. Frenzel M, Dettner K, Wirth D, Waibel J, Boland W (1992) Cantharidin analogues and their attractancy for ceratopogonid flies (Diptera: Ceratopogonidae). Experientia 48:106–111. doi: 10.1007/BF01923620 CrossRefGoogle Scholar
  31. Hash JM, Brown BV (2015) Revision of the new world species of the millipede-parasitic genus Myriophora Brown (Diptera: Phoridae). Zootaxa 4035:1–79CrossRefPubMedGoogle Scholar
  32. Heraty J (2009) Parasitoid biodiversity and insect pest management. In: Foottit RG, Adler PH (eds) Insect biodiversity: science and society. Wiley-Blackwell, Oxford, pp 445–462CrossRefGoogle Scholar
  33. Huth A (2000) Defensive secretions of millipedes: more than just a product of melting point decrease? Fragmenta Faunistica 43:191–200Google Scholar
  34. Jacobson M (1966) Chemical insect attractants and repellents. Annu Rev Entomol 11:403–422CrossRefPubMedGoogle Scholar
  35. Knab F (1913) Some earlier observations on the habits of Aphiochaeta juli Brues. Insecutor Inscit Menstr l 1:24Google Scholar
  36. Knutson LV, Vala J-C (2011) Biology of snail-killing Sciomyzidae flies. Cambridge University Press, NY, USAGoogle Scholar
  37. Köpf A, Rank N, Roininen H, Tahvanainen J (1997) Defensive larval secretions of leaf beetles attract a specialist predator Parasyrphus nigritarsis. Ecol Entomol 22:176–183CrossRefGoogle Scholar
  38. Krell F-T, Schmitt T, Linsenmair KE (1997) Diplopod defensive secretions act as attractants for necrophagous scarab beetles (Diplopoda; Insecta, Coleoptera: Scrabaeidae). Entomol Scand Supp 51:281–285Google Scholar
  39. Kuwahara Y, Ômura H, Tanabe T (2002) 2-Nitroethenylbenzenes as natural products in millipede defense secretions. Naturwissenschaften 89:308–310CrossRefPubMedGoogle Scholar
  40. Lakes-Harlan R, Lehmann GUC (2015) Parasitoid flies exploiting acoustic communication of insects—comparative aspects of independent functional adaptations. J Comp Physiol 201:123–132. doi: 10.1007/s00359-014-0958-3 CrossRefGoogle Scholar
  41. Larsen TH, Lopera A, Forsyth A, Génier F (2009) From coprophagy to predation: a dung beetle that kills millipedes. Biol Lett 5:152–155CrossRefPubMedPubMedCentralGoogle Scholar
  42. Maschwitz U, Weissflog A, Seebauer S, Disney RHL, Witte V (2008) Studies on European ant decapitating flies (Diptera: Phoridae): I. Releasers and phenology of parasitism of Pseudacteon formicarum. Sociobiology 51:127–140Google Scholar
  43. Morehead SA, Feener DH Jr (2000) Visual and chemical cues used in host location and acceptance by a dipteran parasitoid. J Insect Behav 13:613–625CrossRefGoogle Scholar
  44. Mumm R, Dicke M (2010) Variation in natural plant products and the attraction of bodyguards involved in indirect plant defense. Can J Zool 88:628–667. doi: 10.1139/Z10-032 CrossRefGoogle Scholar
  45. Noldus L, van Lenteren J, Lewis WJ (1991) How Trichogramma parasitoids use moth sex pheromones as kairomones: orientation behaviour in a wind tunnel. Physiol Entomol 16:313–327CrossRefGoogle Scholar
  46. Ômura H, Kuwahara Y, Tanabe T (2002) 1-Octen-3-ol together with geosmin: new secretion compounds from a polydesmid millipede, Niponia nodulosa. J Chem Ecol 28:2601–2612. doi: 10.1023/A:1021400606217 CrossRefPubMedGoogle Scholar
  47. Pape T (1990) Revisionary notes on American Sarcophaginae (Diptera: Sarcophagidae). Tijdschrift voor Entomologie 133:43–74Google Scholar
  48. Peeters C, De Greef S (2015) Predation on large millipedes and self-assembling chains in Leptogenys ants from Cambodia. Insect Soc. doi: 10.1007/s00040-015-0426-2 Google Scholar
  49. Percy JE, Weatherston J (1971) Studies of physiologically active arthropod secretions. V. Histological studies of the defence mechanism of Narceus annularis (Raf.) (Diplopoda: Spirobolida). Can J Zool 49:278–279. doi: 10.1139/z71-040 CrossRefPubMedGoogle Scholar
  50. Picard F (1930) Sur le parasitisme d’un phoride (Megaselia cuspidata Schmitz) aux depens d’un myriapode. Bull Soc Zool Fr 55:180–183Google Scholar
  51. Schmitt T, Krell F-T, Linsenmair KE (2004) Quinone mixture as attractant for necrophagous dung beetles specialized on dead millipedes. J Chem Ecol 30:731–740CrossRefPubMedGoogle Scholar
  52. Schmitz H (1939) A new species of Phoridae (Diptera) associated with millipedes, from the Yemen. Proc Royal Entomol Soc B 8:43–45. doi: 10.1111/j.1365-3113.1939.tb01281.x Google Scholar
  53. Shear WA (2015) The chemical defenses of millipedes (Diplopoda): biochemistry, physiology and ecology. Biochem Syst Ecol 61:78–117. doi: 10.1016/j.bse.2015.04.033 CrossRefGoogle Scholar
  54. Shelley R, Golavatch S (2011) Atlas of myriapod biogeography. I. Indigenous ordinal and supra-ordinal distributions in the Diplopoda: perspectives on taxon origins and ages, and a hypothesis on the origin and early evolution of the class. Insecta Mundi 158:1–134Google Scholar
  55. Sierwald P, Bond JE (2007) Current status of the myriapod class Diplopoda (millipedes): taxonomic diversity and phylogeny. Annu Rev Entomol 52:401–420. doi: 10.1146/annurev.ento.52.111805.090210 CrossRefPubMedGoogle Scholar
  56. Stoepler TM, Disney RHL (2013) A new species of Megaselia Rondani (Diptera: Phoridae) reared from larvae of moths (Lepidoptera: Limacodidae). Proc Entomol Soc Wash 115:85–95. doi: 10.4289/0013-8797.115.1.85 CrossRefGoogle Scholar
  57. Stowe MK, Turlings TC, Loughrin JH, Lewis WJ, Tumlinson JH (1995) The chemistry of eavesdropping, alarm, and deceit. Proc Natl Acad Sci U S A 92:23–28CrossRefPubMedPubMedCentralGoogle Scholar
  58. Vujisić LV, Makarov SE, Ćurčić BP, Ilić BS, Tešević VV, Gođevac DM, Vučković IM, Ćurčić SB, Mitić BM (2011) Composition of the defensive secretion in three species of European millipedes. J Chem Ecol 37:1358–1364CrossRefPubMedGoogle Scholar
  59. Weissflog A, Maschwitz U, Seebauer S, Disney RHL, Seifert B, Witte V (2008) Studies on European ant decapitating flies (Diptera: Phoridae): II. Observations that contradict the reported catholicity of host choice by Pseudacteon formicarum. Sociobiology 51:87–94Google Scholar
  60. Weldon PJ, Aldrich JR, Klun JA, Oliver JE, Debboun M (2003) Benzoquinones from millipedes deter mosquitoes and elicit self-anointing in capuchin monkeys (Cebus spp.). Naturwissenschaften 90:301–304CrossRefPubMedGoogle Scholar
  61. Witte V, Disney RHL, Weissflog A, Maschwitz U (2010) Studies in European ant-decapitating flies (Diptera: Phoridae): ant alarm pheromone as host finding cue in Pseudacteon brevicauda, a parasite of Myrmica rubra (Formicidae: Myrmicinae). J Nat Hist 44:905–912CrossRefGoogle Scholar
  62. Zaragoza-Caballero S, Zurita-García ML (2015) A preliminary study on the phylogeny of the family Phengodidae (Insecta: Coleoptera). Zootaxa 3947:527. doi: 10.11646/zootaxa.3947.4.4 CrossRefPubMedGoogle Scholar
  63. Zhang Q-H, Aldrich JR (2004) Attraction of scavenging chloropid and milichiid flies (Diptera) to metathoracic scent gland compounds of plant bugs (Heteroptera: Miridae). Environ Entomol 33:12–20. doi: 10.1603/0046-225X-33.1.12 CrossRefGoogle Scholar
  64. Zuk M, Rotenberry JT, Tinghitella RM (2006) Silent night: adaptive disappearance of a sexual signal in a parasitized population of field crickets. Biol Lett 2:521–524. doi: 10.1098/rsbl.2006.0539 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • John M. Hash
    • 1
  • Jocelyn G. Millar
    • 1
  • John M. Heraty
    • 1
  • James F. Harwood
    • 2
  • Brian V. Brown
    • 3
  1. 1.Department of EntomologyUniversity of California, RiversideRiversideUSA
  2. 2.HonoluluUSA
  3. 3.Entomology SectionNatural History Museum of Los Angeles CountyLos AngelesUSA

Personalised recommendations