Journal of Chemical Ecology

, Volume 43, Issue 2, pp 120–128 | Cite as

Nematode Root Herbivory in Tomato Increases Leaf Defenses and Reduces Leaf Miner Oviposition and Performance

  • Carla C. M. ArceEmail author
  • Ricardo A. R. Machado
  • Natália S. Ribas
  • Paulo F. Cristaldo
  • Lívia M. S. Ataíde
  • Ângelo Pallini
  • Flávia M. Carmo
  • Leandro G. Freitas
  • Eraldo LimaEmail author


The outcome of plant-mediated interactions among herbivores from several feeding guilds has been studied intensively. However, our understanding on the effects of nematode root herbivory on leaf miner oviposition behavior and performance remain limited. In this study, we evaluated whether Meloidogyne incognita root herbivory affects Tuta absoluta oviposition preference on Solanum lycopersicum plants and the development of the resulting offspring. To investigate the M. incognita-herbivory induced plant systemic responses that might explain the observed biological effects, we measured photosynthetic rates, leaf trypsin protease inhibitor activities, and analyzed the profile of volatiles emitted by the leaves of root-infested and non-infested plants. We found that T. absoluta females avoided laying eggs on the leaves of root-infested plants, and that root infestation negatively affected the pupation process of T. absoluta. These effects were accompanied by a strong suppression of leaf volatile emissions, a decrease in photosynthetic rates, and an increase in the activity of leaf trypsin protease inhibitors. Our study reveals that root attack by nematodes can shape leaf physiology, and thereby increases plant resistance.


Tuta absoluta Meloidogyne incognita Solanum lycopersicum Systemic-induced plant responses 



We thank Jay Rosenheim, Ash Zemenick, Michael Culshaw-Maurer, Madelaine Venzon, Jeremy McNeil, Matthias Erb and Arne Janssen for critically reading the manuscript; and to FAPEMIG, CAPES, CNPq, and INCT–Semiochemicals on Agriculture for financial support. We also thank Felipe Lemos for helping with the GC measurments. CA was supported by FAPEMIG and CAPES (BPD-00065-14) and AP by FAPEMIG and CNPq.

Supplementary material

10886_2016_810_MOESM1_ESM.pdf (485 kb)
Online Resource Fig. 1 Control and Meloidogyne incognita-infested tomato plants 20 d after nematode egg inoculation (PDF 484 kb)
10886_2016_810_MOESM2_ESM.pdf (46 kb)
Online Resource Fig. 2 Experimental set up for aboveground volatile collection (PDF 46 kb)
10886_2016_810_MOESM3_ESM.pdf (234 kb)
Online Resource Fig. 3 Total Ion chromatograms (TICs) from blank (empty glass chamber), control tomato plants and root-infested plants. Arrows highlight volatile compounds that statistically differed between treatments (1: α-pinene; 2: α-terpinene; 3: β-phellandrene; 4: β-caryophyllene; 5: α-humulene; 6: Unknown 1; 7: Unknown 2; 8: Unknown 3; and Internal Standard: N-heptyl-acetate). (PDF 234 kb)


  1. Agrawal AA (2004) Resistance and susceptibility of milkweed: competition, root herbivory, and plant genetic variation. Ecology 85:2118–2133CrossRefGoogle Scholar
  2. Anderson P, Sabek MM, Wackers FL (2011) Root herbivory affects oviposition and feeding behavior of a foliar herbivore. Behav Ecol 22:1272–1277CrossRefGoogle Scholar
  3. Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Annu Rev Entomol 47:817–844CrossRefPubMedGoogle Scholar
  4. Bede JC, McNeil JN, Tobe SS (2007) The role of neuropeptides in caterpillar nutritional ecology. Peptides 28:185–196CrossRefPubMedGoogle Scholar
  5. Bernays EA, Chapman RF (1994) Host-plant selection by phytophagous insects. Springer Science & Business Media TSGoogle Scholar
  6. Beyaert I, Hilker M (2014) Plant odour plumes as mediators of plant–insect interactions. Biol Rev 89:68–81CrossRefPubMedGoogle Scholar
  7. Bezemer TM, van Dam NM (2005) Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol Evol 20:617–624CrossRefPubMedGoogle Scholar
  8. Bezemer TM, Wagenaar R, van Dam NM, Wäckers FL (2002) Interactions between root and shoot feeding insects are mediated by primary and secondary plant compounds. Proc Exp Appl Entomol 13:117–121Google Scholar
  9. Bezemer TM, Wagenaar R, van Dam NM, Wäckers FL (2003) Interactions between above- and belowground insect herbivores as mediated by the plant defense system. Oikos 101:555–562CrossRefGoogle Scholar
  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254Google Scholar
  11. Broadway RM, Duffey SS (1986) Plant proteinase inhibitors: mechanism of action and effect on the growth and digestive physiology of larval Heliothis zea and Spodoptera exiqua. J Insect Physiol 32:827–833CrossRefGoogle Scholar
  12. Bruce TJA, Pickett JA (2011) Perception of plant volatile blends by herbivorous insects–finding the right mix. Phytochemistry 72:1605–1611CrossRefPubMedGoogle Scholar
  13. Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274CrossRefPubMedGoogle Scholar
  14. Clavijo McCormick A, Unsicker SB, Gershenzon J (2012) The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci 17:303–310CrossRefPubMedGoogle Scholar
  15. Curtinhas JN (2011) Oviposição de Tuta absoluta (Lepidoptera: Gelechiidae) em genótipos de tomate: O papel da experiência. Universidade Federal de ViçosaGoogle Scholar
  16. de Oliveira EF, Pallini A, Janssen A (2016) Herbivores with similar feeding modes interact through the induction of different plant responses. Oecologia 180:1–10CrossRefPubMedGoogle Scholar
  17. Dunn JP, Frommelt K (1998) Effects of below-ground herbivory by Diabrotica virgifera virgifera (Col., Chrysomelidea) and soil moisture on leaf gas exchange of maize. J Appl Entomol 122:179–183CrossRefGoogle Scholar
  18. Ennis D, Despland E, Chen F, Forgione P, Bauce E (2016) Spruce budworm feeding and oviposition are stimulated by monoterpenes in white spruce epicuticular waxes. Insect Sci. doi: 10.1111/1744-7917.12279 PubMedGoogle Scholar
  19. Erb M, Robert CAM, Marti G, Lu J, Doyen GR, Villard N, Barrière Y, French BW, Wolfender JL, Turlings TC, Gershenzon J (2015) A physiological and behavioral mechanism for leaf herbivore-induced systemic root resistance. Plant Physiol 169:2884–2894PubMedPubMedCentralGoogle Scholar
  20. Ferrieri AP, Arce CCM, Machado RAR, Meza-Canales ID, Lima R, Baldwin IT, Erb M (2015) A cell wall invertase inhibitor (NaCWII) reduces growth and increases secondary metabolite biosynthesis in herbivore-attacked plants. New Phyt 208(2):519–530Google Scholar
  21. Godfrey LD, Meinke LJ, Wright RJ (1993) Vegetative and reproductive biomass accumulation in-field corn – response to root injury by western corn-rootworm (Coleoptera, Chrysomelidae). J Econ Entomol 86:1557–1573CrossRefGoogle Scholar
  22. Guedes RNC, Picanço MC (2012) The tomato borer Tuta absoluta in South America: Pest status, management and insecticide resistance. EPPO Bull 42:211–216CrossRefGoogle Scholar
  23. Hartlieb E, Rembold H (1996) Behavioral response of female Helicoverpa ( Heliothis) armigera HB. (Lepidoptera: Noctuidae) moths to synthetic pigeonpea (Cajanus cajan L.) kairomone. J Chem Ecol 22:821–837CrossRefPubMedGoogle Scholar
  24. Hesterlee S, Morton DB (1996) Insect physiology: the emerging story of ecdysis. Curr Biol 6:648–650CrossRefPubMedGoogle Scholar
  25. Hopkins RJ, Ekbom B, Henkow L (1998) Glucosinolate content and susceptibility for insect attack of three populations of Sinapis alba. J Chem Ecol 24:1203–1216CrossRefGoogle Scholar
  26. Hussey RS, Baker KR (1973) Comparison of methods of collecting inocula for Meloidogyne spp., including a new technique. Plant Dis Report 57:1025–1028Google Scholar
  27. Jaenike J (1978) On optimal oviposition behavior in phytophagous insects. Theor Popul Biol 14:350–356CrossRefPubMedGoogle Scholar
  28. Jimenez-Aleman GH, Machado RA, Görls H, Baldwin IT, Boland W (2015) Synthesis, structural characterization and biological activity of two diastereomeric JA-Ile macrolactones. ‎Org Biomol Chem 13:5885–5893Google Scholar
  29. Johnson SN, Clark KE, Hartley SE, Jones TH, McKenzie SW, Koricheva J (2012) Aboveground-belowground herbivore interactions: a meta-analysis. Ecology 93:2208–2215CrossRefPubMedGoogle Scholar
  30. Kabouw P, Kos M, Kleine S, Vockenhuber EA, Van Loon JJ, Van der Putten WH, Van Dam NM, Biere A (2011) Effects of soil organisms on aboveground multitrophic interactions are consistent between plant genotypes mediating the interaction. Entomol Exp Appl 139:197–206CrossRefGoogle Scholar
  31. Kakade ML, Rackis JJ, McGhee JE, Puski G (1974) Determination of trypsin inhibitor activity of soy products: a collaborative analysis of an improved procedure. Cereal Chem 51:376–382Google Scholar
  32. Kaplan I, Denno RF (2007) Interspecific interactions in phytophagous insects revisited: a quantitative assessment of competition theory. Ecol Lett 10:977–994CrossRefPubMedGoogle Scholar
  33. Kaplan I, Halitschke R, Kessler A, Sardanelli S, Denno RF (2008) Constitutive and induced defenses to herbivory in above-and belowground plant tissues. Ecology 89:392–406CrossRefPubMedGoogle Scholar
  34. Karlsson MF, Birgersson G, Cotes Prado AM, Bosa F, Bengtsson M, Witzgall P (2009) Plant odor analysis of potato: response of Guatemalan moth to above-and belowground potato volatiles. J Agric Food Chem 57:5903–5909CrossRefPubMedGoogle Scholar
  35. Kessler A, Baldwin IT (2002) Plant responses to insect herbivory. Annu Rev Plant Biol 53:299–328CrossRefPubMedGoogle Scholar
  36. Kutyniok M, Müller C (2012) Crosstalk between above-and belowground herbivores is mediated by minute metabolic responses of the host Arabidopsis thaliana. J Exp Bot 63:6199–6210CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lopes CA, Ávila ACM-C (eds) (2005) Doenças do tomateiro. Embrapa HortaliçasGoogle Scholar
  38. Machado RAR, Ferrieri AP, Robert CAM, Glauser G, Kallenbach M, Baldwin IT, Erb M (2013) Leaf-herbivore attack reduces carbon reserves and regrowth from the roots via jasmonate and auxin signaling. New Phytol 200:1234–1246CrossRefPubMedGoogle Scholar
  39. Machado RAR, Arce C, Ferrieri AP, Baldwin IT, Erb M (2015) Jasmonate-dependent depletion of soluble sugars compromises plant resistance to Manduca sexta. New Phytol 207:91–105CrossRefPubMedGoogle Scholar
  40. Machado RAR, McClure M, Hervé M, Baldwin IT, Erb M (2016a) Benefits of jasmonate-dependent defenses against vertebrate herbivores in nature. Elife 5:e13720Google Scholar
  41. Machado RA, Robert CA, Arce CC, Ferrieri AP, Xu S, Jimenez-Aleman GH, Erb M (2016b) Auxin is rapidly induced by herbivory attack and regulates systemic, jasmonate-dependent defenses. Plant Physiol pp–00940Google Scholar
  42. Masters GJ, Brown VK (1992) Plant-mediated interactions between two spatially separated insects. Funct Ecol 6:175–179CrossRefGoogle Scholar
  43. Matt P, Krapp A, Haake V, Mock HP, Stitt M (2002) Decreased Rubisco activity leads to dramatic changes of nitrate metabolism, amino acid metabolism and the levels of phenylpropanoids and nicotine in tobacco antisense RBCS transformants. Plant J 30:663–677CrossRefPubMedGoogle Scholar
  44. Mihsfeldt LH, Parra JRP (1999) Biologia de Tuta absoluta (Meyrick, 1917) em dieta artificial. Sci Agric 56:769–776CrossRefGoogle Scholar
  45. Miranda MMM, Picanço M, Zanuncio JC, Guedes RNC (1998) Ecological life table of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Biocontrol Sci Tech 8:597–606CrossRefGoogle Scholar
  46. Murray PJ, Dawson LA, Grayston SJ (2002) Influence of root herbivory on growth response and carbon assimilation by white clover plants. Appl Soil Ecol 20:97–105CrossRefGoogle Scholar
  47. Neveu N, Grandgirard J, Nenon JP, Cortesero AM (2002) Systemic release of herbivore-induced plant volatiles by turnips infested by concealed root- feeding larvae Delia radicum L. J Chem Ecol 28:1717–1732CrossRefPubMedGoogle Scholar
  48. Pierre PS, Jansen JJ, Hordijk CA, Van Dam NM, Cortesero AM, Dugravot S (2011) Differences in volatile profiles of turnip plants subjected to single and dual herbivory above-and below-ground. J Chem Ecol 37:368–377CrossRefPubMedPubMedCentralGoogle Scholar
  49. Poelman EH, Broekgaarden C, van Loon JJA, Dicke M (2008) Early season herbivore differentially affects plant defence responses to subsequently colonizing herbivores and their abundance in the field. Mol Ecol 17:3352–3365CrossRefPubMedGoogle Scholar
  50. Proffit M, Birgersson G, Bengtsson M, Reis R Jr, Witzgall P, Lima E (2011) Attraction and oviposition of Tuta absoluta females in response to tomato leaf volatiles. J Chem Ecol 37:565–574CrossRefPubMedGoogle Scholar
  51. R Development Core Team (2015) R: A language and environment for statistical computing. The R foundation for statistical computing. ISBN: 3–900051–07-0, Vienna, AustriaGoogle Scholar
  52. Rasmann S, Turlings TCJ (2007) Simultaneous feeding by aboveground and belowground herbivores attenuates plant-mediated attraction of their respective natural enemies. Ecol Lett 10:926–936CrossRefPubMedGoogle Scholar
  53. Renwick JAA, Chew FS (1994) Oviposition behavior in Lepidoptera. Annu Rev Entomol 39:377–400CrossRefGoogle Scholar
  54. Ryan CA (1989) Proteinase inhibitor gene families: strategies for transformation to improve plant defenses against herbivores. BioEssays 10:20–24CrossRefPubMedGoogle Scholar
  55. Sarmento RA, Lemos F, Bleeker PM, Schuurink RC, Pallini A, Oliveira MGA, Lima ER, Kant M, Sabelis MW, Janssen A (2011) A herbivore that manipulates plant defence. Ecol Lett 14:229–236Google Scholar
  56. Sellami S, Jamoussi K (2016) Investigation of larvae digestive β-glucosidase and proteases of the tomato pest Tuta absoluta for inhibiting the insect development. Bull Entomol Res 106:1–9CrossRefGoogle Scholar
  57. Soler R, Bezemer TM, Van Der Putten WH, Vet LE, Harvey JA (2005) Root herbivore effects on above- ground herbivore, parasitoid and hyperparasitoid performance via changes in plant quality. J Anim Ecol 74:1121–1130CrossRefGoogle Scholar
  58. Soler R, Harvey JA, Kamp AFD, Vet LE, Van der Putten WH, Van Dam NM, Stuefer JF, Gols R, Hordijk CA, Martijn Bezemer T (2007) Root herbivores influence the behaviour of an aboveground parasitoid through changes in plant-volatile signals. Oikos 116:367–376CrossRefGoogle Scholar
  59. Soler R, Harvey JA, Rouchet R, Schaper SV, Martijn Bezemer T (2010) Impacts of belowground herbivory on oviposition decisions in two congeneric butterfly species. Entomol Exp Appl 136:191–198CrossRefGoogle Scholar
  60. Soler R, Erb M, Kaplan I (2013) Long distance root-shoot signalling in plant-insect community interactions. Trends Plant Sci 18:149–156CrossRefPubMedGoogle Scholar
  61. Späthe A, Reinecke A, Olsson SB, Kesavan S, Knaden M, Hansson BS (2012) Plant species-and status-specific odorant blends guide oviposition choice in the moth Manduca sexta. Chem Senses 38:1–13Google Scholar
  62. Staley JT, Mortimer SR, Morecroft MD (2008) Drought impacts on above–belowground interactions: do effects differ between annual and perennial host species? Basic Appl Ecol 9:673–681CrossRefGoogle Scholar
  63. Strapasson P, Pinto-Zevallos DM, Paudel S, Rajotte EG, Felton GW, Zarbin PH (2014) Enhancing plant resistance at the seed stage: low concentrations of methyl jasmonate reduce the performance of the leaf miner Tuta absoluta but do not alter the behavior of its predator Chrysoperla externa. J Chem Ecol 40:1090–1098CrossRefPubMedGoogle Scholar
  64. Tasin M, Bäckman A-C, Bengtsson M, Ioriatti C, Witzgall P (2006) Essential host plant cues in the grapevine moth. Naturwissenschaften 93:141–144CrossRefPubMedGoogle Scholar
  65. Thompson JN, Pellmyr O (1991) Evolution of oviposition behavior and host preference in Lepidoptera. Annu Rev Entomol 36:65–89CrossRefGoogle Scholar
  66. van Dam NM, Raaijmakers CE (2006) Local and systemic induced responses to cabbage root fly larvae (Delia radicum) in Brassica nigra and B. oleracea. Chemoecology 16:17–24CrossRefGoogle Scholar
  67. van Dam NM, Raaijmakers CE, Van der Putten WH (2005) Root herbivory reduces growth and survival of the shoot feeding specialist Pieris rapae on Brassica nigra. Entomol Exp Appl 115:161–170CrossRefGoogle Scholar
  68. Wondafrash M, van Dam NM, Tytgat TOG (2013) Plant systemic induced responses mediate interactions between root parasitic nematodes and aboveground herbivorous insects. Front Plant Sci 4:165–179CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Carla C. M. Arce
    • 1
    • 2
    Email author
  • Ricardo A. R. Machado
    • 2
  • Natália S. Ribas
    • 1
  • Paulo F. Cristaldo
    • 1
    • 3
  • Lívia M. S. Ataíde
    • 1
    • 4
  • Ângelo Pallini
    • 1
  • Flávia M. Carmo
    • 5
  • Leandro G. Freitas
    • 6
  • Eraldo Lima
    • 1
    Email author
  1. 1.Department of EntomologyUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Institute of Plant SciencesUniversity of BernBernSwitzerland
  3. 3.Departament of EcologyUniversidade Federal do SergipeAracajuBrazil
  4. 4.Institute of Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
  5. 5.Department of BiologyUniversidade Federal de ViçosaViçosaBrazil
  6. 6.Department of PhytopathologyUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations