Advertisement

Journal of Chemical Ecology

, Volume 43, Issue 1, pp 106–117 | Cite as

Responses of Human Neonates to Highly Diluted Odorants from Sweat

  • Helene M. Loos
  • Sébastien Doucet
  • Fanny Védrines
  • Constanze Sharapa
  • Robert Soussignan
  • Karine Durand
  • Paul Sagot
  • Andrea Buettner
  • Benoist Schaal
Article

Abstract

Conjugated forms of odorants contributing to sweat odor occur not only in human sweat but also in amniotic fluid, colostrum, and milk. However, it is unclear whether the released odorants are detected and hedonically discriminated by human newborns. To investigate this issue, we administered highly diluted solutions of (R)/(S)-3-methyl-3-sulfanylhexan-1-ol (MSH), (R)/(S)-3-sulfanylhexan-1-ol (SH), (E)/(Z)-3-methylhex-2-enoic acid (3M2H), and (R)/(S)-3-hydroxy-3-methylhexanoic acid (HMHA) to 3-d-old infants while their respiratory rate and oro-facial movements were recorded. Adult sensitivity to these odorants was assessed via triangle tests. Whereas no neonatal stimulus-specific response was found for respiratory rate, oro-facial reactivity indicated orthonasal detection of MSH and SH by male neonates, and of HMHA by the whole group of neonates. Dependent on the dilution of odorants, newborns evinced neutral responses or longer negative oro-facial expressions compared with the reference stimuli. Finally, newborns appeared to be more sensitive to the target odorants than did adults.

Keywords

Olfaction Human newborn 3-methyl-2-hexenoic acid 3-hydroxy-3-methylhexanoic acid 3-sulfanyl-1-hexanol 3-methyl-3-sulfanylhexan-1-ol 

Notes

Acknowledgments

We express our gratitude to the parents who agreed to let their infants participate in this study, and to the midwives and staff at the maternity ward of Dijon University Hospital for their kind and invaluable support. Dr. Catherine Dacremont is thanked for continued discussion relating to this work. The constructive comments by two anonymous referees are gratefully acknowledged.

This work was supported by grants from the Bavarian Research Foundation (Bayerische Forschungsstiftung), the Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung), the Cusanuswerk Bischöfliche Studienförderung, the Regional Council of Burgundy (Conseil Régional de Bourgogne), the French National Research Agency (ANR Colostrum), and the National Center for Scientific Research (Centre National de la Recherche Scientifique).

Compliance with Ethical Standards

All procedures performed in this study were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of Interest

Helene M. Loos, Sébastien Doucet, Fanny Védrines, Constanze Sharapa, Robert Soussignan, Karine Durand, Paul Sagot, Andrea Buettner, and Benoist Schaal declare that they have no conflict of interest.

References

  1. Alberts JR, Ronca AE (2012) The experience of being born: a natural context for learning to suckle. Int J Pediatr 2012:129328PubMedPubMedCentralGoogle Scholar
  2. Baumann T, Bergmann S, Schmidt-Rose T et al (2014) Glutathione-conjugated sulfanylalkanols are substrates for ABCC11 and gamma-glutamyl transferase 1: a potential new pathway for the formation of odorant precursors in the apocrine sweat gland. Exp Dermatol 23:247–252CrossRefPubMedPubMedCentralGoogle Scholar
  3. Begnaud F, Starkenmann C, Van de Waal M, Chaintreau A (2006) Chiral multidimensional gas chromatography (MDGC) and chiral GC-olfactometry with a double-cool-strand interface: application to malodors. Chem Biodiversity 3:150–160CrossRefGoogle Scholar
  4. Bingham PM, Abassi S, Sivieri E (2003) A pilot study of milk odor effect on nonnutritive sucking by premature newborns. Arch Pediatr Adolesc Med 157:72–75CrossRefPubMedGoogle Scholar
  5. Block E (1992) The organosulfur chemistry of the genus Allium – implications for the organic chemistry of sulfur. Angew Chem Int Ed Engl 31:1135–1178CrossRefGoogle Scholar
  6. Brewington CR, Parks OW, Schwartz DP (1973) Conjugated compounds in cow's milk. J Agric Food Chem 21:38–39CrossRefPubMedGoogle Scholar
  7. Burke SM, Veltman DJ, Gerber J, Hummel T, Bakker J (2012) Heterosexual men and women both show a hypothalamic response to the chemo-signal androstadienone. PLoS One 7:e40993CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cernoch JM, Porter RH (1985) Recognition of maternal axillary odors by infants. Child Dev 56:1593–1598CrossRefPubMedGoogle Scholar
  9. Coureaud G, Langlois D, Sicard G, Schaal B (2004) Newborn rabbit responsiveness to the mammary pheromone is concentration-dependent. Chem Senses 29:341–350CrossRefPubMedGoogle Scholar
  10. Delaunay-El Allam M, Marlier L, Schaal B (2006) Learning at the breast: preference formation for an artificial scent and its attraction against the odor of maternal milk. Infant Behav Dev 29:308–321CrossRefPubMedGoogle Scholar
  11. Delaunay-El Allam M, Soussignan R, Patris B, Marlier L, Schaal B (2010) Long-lasting memory for an odor acquired at the mother's breast. Dev Sci 13:849–863CrossRefPubMedGoogle Scholar
  12. DiGiulio DB, Romero R, Amogan HP et al (2008) Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One 3:e3056CrossRefPubMedPubMedCentralGoogle Scholar
  13. Doty RL, Cameron EL (2009) Sex differences and reproductive hormone influences on human odor perception. Physiol Behav 97:213–228CrossRefPubMedPubMedCentralGoogle Scholar
  14. Doty RL, Orndorff MM, Leyden J, Kligman A (1978) Communication of gender from human axillary odors: relationship to perceived intensity and hedonicity. Behav Biol 23:373–380CrossRefPubMedGoogle Scholar
  15. Doucet S, Soussignan R, Sagot P, Schaal B (2007) The "smellscape" of mother's breast: effects of odor masking and selective unmasking on neonatal arousal, oral, and visual responses. Dev Psychobiol 49:129–138CrossRefPubMedGoogle Scholar
  16. Doucet S, Soussignan R, Sagot P, Schaal B (2009) The secretion of areolar (Montgomery's) glands from lactating women elicits selective, unconditional responses in neonates. PLoS One 4:e7579CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dufa M, Hossaert-McKey M, Anstett MC (2004) Temporal and sexual variation of leaf-produced pollinator-attracting odours in the dwarf palm. Oecologia 139:392–398CrossRefGoogle Scholar
  18. Engen T (1965) Psychophysical analysis of the odor intensity of homologous alcohols. J Exp Psychol 70:611–616CrossRefPubMedGoogle Scholar
  19. Fabregat A, Kotronoulas A, Marcos J et al (2013) Detection, synthesis and characterization of metabolites of steroid hormones conjugated with cysteine. Steroids 78:327–336CrossRefPubMedGoogle Scholar
  20. Fedrizzi B, Guella G, Perenzoni D, Gasperotti M, Masuero D, Vrhovsek U, Mattivi F (2012) Identification of intermediates involved in the biosynthetic pathway of 3-mercaptohexan-1-ol conjugates in yellow passion fruit (Passiflora edulis F. Flavicarpa). Phytochemistry 77:287–293CrossRefPubMedGoogle Scholar
  21. Ferdenzi C, Schaal B, Roberts SC (2010) Family scents: developmental changes in the perception of kin body odor? J Chem Ecol 36:847–854CrossRefPubMedGoogle Scholar
  22. Ferdenzi C, Roblin S, Baldovini N, Razafindrazaka H, Pierron D, Bensafi M (2015) Sensitivity to human body odor compounds. Chem Senses 40:271Google Scholar
  23. Flower DR (1996) The lipocalin protein family: structure and function. Biochem J 318:1–14CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gordon SG, Smith K, Rabinowitz JL, Vagelos PR (1973) Studies of trans-3-methyl-2-hexenoic acid in normal and schizophrenic humans. J Lipid Res 14:495–503PubMedGoogle Scholar
  25. Harker M, Carvell A-M, Marti VPJ, Riazanskaia S, Kelso H, Taylor D, Grimshaw S, Arnold DS, Zillmer R, Shaw J, Kirk JM (2014) Functional characterisation of a SNP in the ABCC11 allele - effects on axillary skin metabolism, odour generation and associated behaviours. J Dermatol Sci 73:23–30CrossRefPubMedGoogle Scholar
  26. Hartmann C, Doucet S, Niclass Y, Dittrich R, Cupisti S, Schaal B, Buettner A, Starkenmann C (2012) Human sweat odour conjugates in human milk, colostrum and amniotic fluid. Food Chem 135:228–233CrossRefGoogle Scholar
  27. Hasegawa Y, Yabuki M, Matsukane M (2004) Identification of new odoriferous compounds in human axillary sweat. Chem Biodivers 1:2042–2050CrossRefPubMedGoogle Scholar
  28. James AG, Austin CJ, Cox DS, Taylor D, Calvert R (2013) Microbiological and biochemical origins of human axillary odour. FEMS Microbiol Ecol 83:527–540CrossRefPubMedGoogle Scholar
  29. Kuhn F, Natsch A (2009) Body odour of monozygotic human twins: a common pattern of odorant carboxylic acids released by a bacterial aminoacylase from axilla secretions contributing to an inherited body odour type. J R Soc Interface 6:377–392CrossRefPubMedGoogle Scholar
  30. Lehrner JP, Gluck J, Laska M (1999) Odor identification, consistency of label use, olfactory threshold and their relationships to odor memory over the human lifespan. Chem Senses 24:337–346CrossRefPubMedGoogle Scholar
  31. Leyden JJ, McGinley KJ, Holzle E, Labows JN, Kligman AM (1981) The microbiology of the human axilla and its relationship to axillary odor. J Invest Dermatol 77:413–416CrossRefPubMedGoogle Scholar
  32. Loos HM, Doucet S, Soussignan R, Hartmann C, Durand K, Dittrich R, Sagot P, Buettner A, Schaal B (2014) Responsiveness of human neonates to the odor of 5α-androst-16-en-3-one: a behavioral paradox? Chem Senses 39:693–703CrossRefPubMedGoogle Scholar
  33. Lopez V, Lindsay RC (1993) Metabolic conjugates as precursors for characterizing flavor compounds in ruminant milks. J Agric Food Chem 41:446–454CrossRefGoogle Scholar
  34. Macfarlane JA (1975) Olfactory discrimination in the neonate. Arch Dis Child 50:827–827Google Scholar
  35. Makin JW, Porter RH (1989) Attractiveness of lactating females' breast odors to neonates. Child Dev 60:803–810CrossRefPubMedGoogle Scholar
  36. Marlier L, Schaal B (1997) Familiarité et discrimination olfactive chez le nouveau-né: Influence différentielle du mode d'alimentation? Enfance 1:47–61CrossRefGoogle Scholar
  37. Marlier L, Schaal B (2005) Human newborns prefer human milk: conspecific milk odor is attractive without postnatal exposure. Child Dev 76:155–168CrossRefPubMedGoogle Scholar
  38. Martin A, Saathoff M, Kuhn F, Max H, Terstegen L, Natsch A (2010) A functional ABCC11 allele is essential in the biochemical formation of human axillary odor. J Invest Dermatol 130:529–540CrossRefPubMedGoogle Scholar
  39. Mizuno K, Mizuno N, Shinohara T, Noda M (2004) Mother-infant skin-to-skin contact after delivery results in early recognition of own mother's milk odour. Acta Paediatr 93:1640–1645CrossRefPubMedGoogle Scholar
  40. Monnery-Patris S, Rouby C, Nicklaus S, Issanchou S (2009) Development of olfactory ability in children: sensitivity and identification. Dev Psychobiol 51:268–276CrossRefPubMedGoogle Scholar
  41. Natsch A, Gfeller H, Gygax P, Schmid J, Acuna G (2003) A specific bacterial aminoacylase cleaves odorant precursors secreted in the human axilla. J Biol Chem 278:5718–5727CrossRefPubMedGoogle Scholar
  42. Natsch A, Derrer S, Flachsmann F, Schmid J (2006) A broad diversity of volatile carboxylic acids, released by a bacterial aminoacylase from axilla secretions, as candidate molecules for the determination of human-body odor type. Chem Biodivers 3:1–20CrossRefPubMedGoogle Scholar
  43. Nielsen BL, Jerome N, Saint-Albin A, Thonat C, Briant C, Boué F, Rampin O, Maurin Y (2011) A mixture of odorant molecules potentially indicating oestrus in mammals elicits penile erections in male rats. Behav Brain Res 225:584–589CrossRefPubMedGoogle Scholar
  44. Oster H (2007) Baby FACS: Facial Action Coding System for infants and young children. New York UniversityGoogle Scholar
  45. Pause BM, Ohrt A, Prehn A, Ferstl R (2004) Positive emotional priming of facial affect perception in females is diminished by chemosensory anxiety signals. Chem Senses 29:797–805CrossRefPubMedGoogle Scholar
  46. Poncelet J, Rinck F, Ziessel A, Joussain P, Thevenet M, Rouby C, Bensafi M (2010) Semantic knowledge influences prewired hedonic responses to odors. PLoS One 5:e13878CrossRefPubMedPubMedCentralGoogle Scholar
  47. Porter RH, Makin JW, Davis LB, Christensen KM (1991) An assessment of the salient olfactory environment of formula-fed infants. Physiol Behav 50:907–911CrossRefPubMedGoogle Scholar
  48. Porter RH, Makin JW, Davis LB, Christensen KM (1992) Breast-fed infants respond to olfactory cues from their own mother and unfamiliar lactating females. Infant Behav Dev 15:85–93CrossRefGoogle Scholar
  49. Prechtl HFR (1974) The behavioral states of the newborn infant (a review). Brain Res 76:185–212CrossRefPubMedGoogle Scholar
  50. Preti G, Leyden JJ (2010) Genetic influences on human body odor: from genes to the axillae. J Invest Dermatol 130:344–346CrossRefPubMedGoogle Scholar
  51. Prokop-Prigge KA, Greene K, Varallo L, Wysocki CJ, Preti G (2016) The effect of ethnicity on human axillary odorant production. J Chem Ecol 42:33–39CrossRefPubMedGoogle Scholar
  52. Romantshik O, Porter R, Tillmann V, Varendi H (2007) Preliminary evidence of a sensitive period for olfactory learning by human newborns. Acta Paediatr 96:372–376CrossRefPubMedGoogle Scholar
  53. Rotimi VO, Duerden BI (1981) The development of the bacterial flora in normal neonates. J Med Microbiol 14:51–62CrossRefPubMedGoogle Scholar
  54. Rovee CK (1969) Psychophysical scaling of olfactory response to the aliphatic alcohols in human neonates. J Exp Child Psychol 7:245–254CrossRefPubMedGoogle Scholar
  55. Russell MJ (1976) Human olfactory communication. Nature 260:520–522CrossRefPubMedGoogle Scholar
  56. Schaal B (2005) From amnion to colostrum to milk: odor bridging in early developmental transitions. In: Hopkins B, Johnson SP (eds) Prenatal development of postnatal functions. Praeger, London, pp. 51–102Google Scholar
  57. Schaal B (2015) Developing human olfaction and its functions in early cognition and behavior. In: Doty RL (ed) Handbook of olfaction and gustation. Wiley, New York, pp. 307–337Google Scholar
  58. Schleidt M, Genzel C (1990) The significance of mother's perfume for infants in the first weeks of their life. Ethol and Sociobiol 11:145–154CrossRefGoogle Scholar
  59. Scott HM, Mason JI, Sharpe RM (2009) Steroidogenesis in the fetal testis and its susceptibility to disruption by exogenous compounds. Endocr Rev 30:883–925CrossRefPubMedGoogle Scholar
  60. Shelley WB, Hurley HJ, Nichols AC (1953) Axillary odor: experimental study of the role of bacteria, apocrine sweat, and deodorants. AMA Arch Derm Syphilol 68:430–446CrossRefPubMedGoogle Scholar
  61. Smith K, Thompson GF, Koster HD (1969) Sweat in schizophrenic patients: identification of the odorous substance. Science 166:398–399CrossRefPubMedGoogle Scholar
  62. Solbu E, Jellestad F, Strætkvern K (1990) Children's sensitivity to odor of trimethylamine. J Chem Ecol 16:1829–1840CrossRefPubMedGoogle Scholar
  63. Soussignan R, Schaal B, Marlier L, Jiang T (1997) Facial and autonomic responses to biological and artificial olfactory stimuli in human neonates: Re-examining early hedonic discrimination of odors. Physiol Behav 62:745–758CrossRefPubMedGoogle Scholar
  64. Spielman AI, Zeng XN, Leyden J, Preti G (1995) Proteinaceous precursors of human axillary odor: isolation of two novel odor-binding proteins. Experientia 51:40–47PubMedGoogle Scholar
  65. Starkenmann C (expected release 2016) The analysis and chemistry of human odors. In: Buettner A (ed) Springer handbook of odors. Springer, in pressGoogle Scholar
  66. Starkenmann C, Niclass Y (2011) New cysteine-S-conjugate precursors of volatile sulfur compounds in bell peppers (Capsicum annuum L. cultivar). J Agric Food Chem 59:3358–3365CrossRefPubMedGoogle Scholar
  67. Starkenmann C, Niclass Y, Troccaz M, Clark AJ (2005) Identification of the precursor of (S)-3-methyl-3-sulfanylhexan-1-ol, the sulfury malodour of human axilla sweat. Chem Biodivers 2:705–716CrossRefPubMedGoogle Scholar
  68. Starkenmann C, Le Calve B, Niclass Y, Cayeux I, Beccucci S, Troccaz M (2008) Olfactory perception of cysteine-S-conjugates from fruits and vegetables. J Agric Food Chem 56:9575–9580CrossRefPubMedGoogle Scholar
  69. Starkenmann C, Niclass Y, Cayeux I (2011) Occurrence of L-γ-glutamyl-S-(1-hydroxy-2-methyl-3-pentanyl)-L-cysteine and S-(1-ethyl-3-hydroxy-2-methylpropyl)-L-cysteine in fresh and processed Allium caepa L. cultivar. Flavour Fragrance J 26:378–384CrossRefGoogle Scholar
  70. Starkenmann C, Mayenzet F, Brauchli R, Troccaz M (2013) 5α-androst-16-en-3α-ol β-D-glucuronide, precursor of 5α-androst-16-en-3α-ol in human sweat. Chem Biodivers 10:2197–2208CrossRefPubMedGoogle Scholar
  71. Starkenmann C, Niclass Y, Cayeux I, Brauchli R, Gagnon A-C (2014) Odorant volatile sulfur compounds in cat urine: occurrence of (+/−)-3,7-dimethyloct-3-sulfanyl-6-en-1-ol and its cysteine conjugate precursor. Flavour Fragrance J 30:91–100CrossRefGoogle Scholar
  72. Steiner JE (1979) Human facial expressions in response to taste and smell stimulation. In: Reese HW, Lipsitt LP (eds) Adv Child Dev Behav, vol 13. Academic Press, New York, pp 257–293Google Scholar
  73. Steingass CB, Grauwet T, Carle R (2014) Influence of harvest maturity and fruit logistics on pineapple (Ananas comosus L. Merr.) volatiles assessed by headspace solid phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC/MS). Food Chem 150:382–391CrossRefPubMedGoogle Scholar
  74. Tannock GW, Fuller R, Smith SL, Hall MA (1990) Plasmid profiling of members of the family Enterobacteriaceae, lactobacilli, and Bifidobacteria to study the transmission of bacteria from mother to infant. J Clin Microbiol 28:1225–1228PubMedPubMedCentralGoogle Scholar
  75. Tominaga T, Peyrot des Gachons C, Dubourdieu D (1998) A new type of flavor precursors in Vitis vinifera L. cv. Sauvignon blanc: S-cysteine conjugates. J Agric Food Chem 46:5215–5219CrossRefGoogle Scholar
  76. Troccaz M, Starkenmann C, Niclass Y, van de Waal M, Clark AJ (2004) 3-methyl-3-sulfanylhexan-1-ol as a major descriptor for the human axilla-sweat odour profile. Chem Biodivers 1:1022–1035CrossRefPubMedGoogle Scholar
  77. Troccaz M, Borchard G, Vuilleumier C, Raviot-Derrien S, Niclass Y, Beccucci S, Starkenmann C (2009) Gender-specific differences between the concentrations of nonvolatile (R)/(S)-3-methyl-3-sulfanylhexan-1-ol and (R)/(S)-3-hydroxy-3-methylhexanoic acid odor precursors in axillary secretions. Chem Senses 34:203–210CrossRefPubMedGoogle Scholar
  78. Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253CrossRefPubMedGoogle Scholar
  79. Urbaniak C, Cummins J, Brackstone M et al (2014) Microbiota of human breast tissue. Appl Environ Microbiol 80:3007–3014CrossRefPubMedPubMedCentralGoogle Scholar
  80. Varendi H, Porter RH, Winberg J (2002) The effect of labor on olfactory exposure learning within the first postnatal hour. Behav Neurosci 116:206–211CrossRefPubMedGoogle Scholar
  81. Wagenstaller M, Buettner A (2013) Quantitative determination of common urinary odorants and their glucuronide conjugates in human urine. Metabolites 3:637–657CrossRefPubMedPubMedCentralGoogle Scholar
  82. Wysocki CJ, Zeng XN, Preti G (1993) Specific anosmia and olfactory sensitivity to 3-methyl-2-hexenoic acid: a major component of human axillary odor. Chem Senses 18:652Google Scholar
  83. Zeng C, Spielman AI, Vowels BR, Leyden JJ, Biemann K, Preti G (1996) A human axillary odorant is carried by apolipoprotein D. Proc Natl Acad Sci U S A 93:6626–6630CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Helene M. Loos
    • 1
    • 2
    • 3
  • Sébastien Doucet
    • 1
    • 2
  • Fanny Védrines
    • 1
  • Constanze Sharapa
    • 3
  • Robert Soussignan
    • 1
  • Karine Durand
    • 1
  • Paul Sagot
    • 4
  • Andrea Buettner
    • 2
    • 3
  • Benoist Schaal
    • 1
  1. 1.Developmental Ethology and Cognitive Psychology Group, Centre des Sciences du Goût et de l’AlimentationCNRS-Université de BourgogneDijonFrance
  2. 2.Department of Chemistry and Pharmacy, Emil Fischer CenterFriedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
  3. 3.Department of Sensory AnalyticsFraunhofer Institute for Process Engineering and Packaging IVVFreisingGermany
  4. 4.Department of Gynecology, Obstetrics and Reproductive BiologyUniversity Hospital DijonDijonFrance

Personalised recommendations