Advertisement

Journal of Chemical Ecology

, Volume 42, Issue 12, pp 1201–1211 | Cite as

Quorum Sensing and Quorum Quenching in the Phycosphere of Phytoplankton: a Case of Chemical Interactions in Ecology

  • Jean luc Rolland
  • Didier Stien
  • Sophie Sanchez-Ferandin
  • Raphaël Lami
Review Article

Abstract

The interactions between bacteria and phytoplankton regulate many important biogeochemical reactions in the marine environment, including those in the global carbon, nitrogen, and sulfur cycles. At the microscopic level, it is now well established that important consortia of bacteria colonize the phycosphere, the immediate environment of phytoplankton cells. In this microscale environment, abundant bacterial cells are organized in a structured biofilm, and exchange information through the diffusion of small molecules called semiochemicals. Among these processes, quorum sensing plays a particular role as, when a sufficient abundance of cells is reached, it allows bacteria to coordinate their gene expression and physiology at the population level. In contrast, quorum quenching mechanisms are employed by many different types of microorganisms that limit the coordination of antagonistic bacteria. This review synthesizes quorum sensing and quorum quenching mechanisms evidenced to date in the phycosphere, emphasizing the implications that these signaling systems have for the regulation of bacterial communities and their activities. The diversity of chemical compounds involved in these processes is examined. We further review the bacterial functions regulated in the phycosphere by quorum sensing, which include biofilm formation, nutrient acquisition, and emission of algaecides. We also discuss quorum quenching compounds as antagonists of quorum sensing, their function in the phycosphere, and their potential biotechnological applications. Overall, the current state of the art demonstrates that quorum sensing and quorum quenching regulate a balance between a symbiotic and a parasitic way of life between bacteria and their phytoplankton host.

Keywords

Quorum sensing Quorum quenching Phytoplankton Phycosphere 

Notes

Acknowledgments

We thank the CNRS for funding this research (grant EC2CO-ROSEOCOM) and Sheree Yau for her help in English grammar and spelling.

Compliance with Ethical Standards

The authors declare no conflict of interest.

Bibliography

  1. Acar M, Mettetal JT, van Oudenaarden A (2008) Stochastic switching as a survival strategy in fluctuating environments. Nat Genet 40:471–475PubMedCrossRefGoogle Scholar
  2. Alavi M, Miller T, Erlandson K, Schneider R, Belas R (2001) Bacterial community associated with Pfiesteria-like dinoflagellate cultures. Environ Microbiol 3:380–396PubMedCrossRefGoogle Scholar
  3. Amin SA, Parker MS, Armbrust EV (2012) Interactions between diatoms and bacteria. Microbiol Mol Biol Rev 76:667–684PubMedPubMedCentralCrossRefGoogle Scholar
  4. Andersen JB, Heydorn A, Hentzer M, Eberl L, Geisenberger O, Christensen BB, Molin S, Givskov M (2001) Gfp-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl Environ Microbiol 67:575–585Google Scholar
  5. Bachofen R, Schenk A (1998) Quorum sensing autoinducers: do they play a role in natural microbial habitats? Microbiol Res 153:61–63CrossRefGoogle Scholar
  6. Bainton NJ, Stead P, Chhabra SR, Bycroft BW, Salmond GP, Stewart GS, Williams P (1992) N-(3-Oxohexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. Biochem J 288:997–1004Google Scholar
  7. Bassler BL (1999) How bacteria talk to each other: regulation of gene expression by quorum sensing. Currr Opin Microbiol 2(6):582–587Google Scholar
  8. Bell W, Mitchell R (1972) Chemotactic and growth responses of marine bacteria to algal extracellular pre-activated products. Biol Bull 143:265–277CrossRefGoogle Scholar
  9. Berger M, Neumann A, Schulz S, Simon M, Brinkhoff T (2011) Tropodithietic acid production in Phaeobacter gallaeciensis is regulated by N-acyl homoserine lactone-mediated quorum sensing. J Bacteriol 193:6576–6585Google Scholar
  10. Biebl H, Allgaier M, Tindall BJ, Koblizek M, Lunsdorf H, Pukall R, Wagner-Döbler I (2005) Dinoroseobacter shibae gen. Nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol 55:1089–1096PubMedCrossRefGoogle Scholar
  11. Borchardt SA, Allain EJ, Michels JJ, Stearns GW, Kelly RF, McCoy WF (2001) Reaction of acylated homoserine lactone bacterial signaling molecules with oxidized halogen antimicrobials. Appl Environ Microbiol 67:3174–3179PubMedPubMedCentralCrossRefGoogle Scholar
  12. Brinkhoff T, Bach G, Heidorn T, Liang L, Schlingloff A, Simon M (2004) Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. Appl Environ Microbiol 70:2560–2565PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bruhn JB, Nielsen KF, Hjelm M, Hansen M, Bresciani J, Schulz S, Gram L (2005) Ecology, inhibitory activity, and morphogenesis of a marine antagonistic bacterium belonging to the Roseobacter clade. Appl Environ Microbiol 71:7263–7270PubMedPubMedCentralCrossRefGoogle Scholar
  14. Buchan A, LeCleir GR, Gulvik CA, Gonzalez JM (2014) Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol 12:686–698PubMedCrossRefGoogle Scholar
  15. Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549PubMedCrossRefGoogle Scholar
  16. Choi H, Mascuch SJ, Villa FA, Byrum T, Teasdale ME, Smith JE, Preskitt LB, Rowley DC, Gerwick L, Gerwick WH (2012) Honaucins A-C, potent inhibitors of inflammation and bacterial quorum sensing: synthetic derivatives and structure-activity relationships. Chem Biol 19:589–598PubMedPubMedCentralCrossRefGoogle Scholar
  17. Christie PJ, Atmakuri K, Krishnamoorthy V, Jakubowski S, Cascales E (2005) Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59:451–485PubMedCrossRefGoogle Scholar
  18. Cornforth DM, Popat R, McNally L, Gurney J, Scott-Phillips TC, Ivens A, Diggle SP, Brown SP (2014) Combinatorial quorum sensing allows bacteria to resolve their social and physical environment. Proc Natl Acad Sci U S A 111:4280–4284PubMedPubMedCentralCrossRefGoogle Scholar
  19. Darch SE, West SA, Winzer K, Diggle SP (2012) Density-dependent fitness benefits in quorum-sensing bacterial populations. Proc Natl Acad Sci U S A 109:8259–8263PubMedPubMedCentralCrossRefGoogle Scholar
  20. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298PubMedCrossRefGoogle Scholar
  21. Decho AW, Visscher PT, Ferry J, Kawaguchi T, He L, Przekop KM, Norman RS, Reid RP (2009) Autoinducers extracted from microbial mats reveal a surprising diversity of N-acylhomoserine lactones (AHLs) and abundance changes that may relate to diel pH. Environ Microbiol 11:409–420Google Scholar
  22. Defoirdt T, Sorgeloos P, Bossier P (2011) Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr Opin Microbiol 14:251–258PubMedCrossRefGoogle Scholar
  23. Delong EF, Franks DG, Alldredge AL (1993) Phylogenetic diversity of aggregate-attached vs free-living marine bacterial assemblages. Limnol Oceanogr 38:924–934CrossRefGoogle Scholar
  24. Dicke M, Sabelis MW (1988) Infochemical terminology: Based on cost-benefit analysis rather than origin of compounds? Funct Ecol:131–139Google Scholar
  25. Diggle SP, Crusz SA, Cámara M (2007) Quorum sensing. Curr Biol 17:R907–R910PubMedCrossRefGoogle Scholar
  26. Doberva M, Sanchez-Ferandin S, Toulza E, Lebaron P, Lami R (2015) Diversity of quorum sensing autoinducer synthases in the Global Ocean sampling metagenomic database. Aquat Microb Ecol 74:107–119CrossRefGoogle Scholar
  27. Dobretsov S, Abed RMM, Al Maskari SMS, Al Sabahi JN, Victor R (2010) Cyanobacterial mats from hot springs produce antimicrobial compounds and quorum-sensing inhibitors under natural conditions. J Appl Phycol 23:983–993CrossRefGoogle Scholar
  28. Dobretsov S, Teplitski M, Bayer M, Gunasekera S, Proksch P, Paul VJ (2011) Inhibition of marine biofouling by bacterial quorum sensing inhibitors. Biofouling 27:893–905PubMedPubMedCentralCrossRefGoogle Scholar
  29. Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–817Google Scholar
  30. Dong YH, Wang LY, Zhang LH (2007) Quorum-quenching microbial infections: mechanisms and implications. Philos Trans R Soc Lond Ser B Biol Sci 362:1201–1211CrossRefGoogle Scholar
  31. Doucette GJ (1995) Interactions between bacteria and harmful algae: a review. Nat Toxins 3:65–74PubMedCrossRefGoogle Scholar
  32. Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ (1981) Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:2444–2449PubMedCrossRefGoogle Scholar
  33. Fandino LB, Riemann L, Steward GF, Long RA, Azam F (2001) Variations in bacterial community structure during a dinoflagellate bloom analyzed by DGGE and 16S rDNA sequencing. Aquat Microb Ecol 23:119–130CrossRefGoogle Scholar
  34. Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gao MS, Teplitski M, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant-Microbe Interact 16:827–834PubMedCrossRefGoogle Scholar
  36. Geng HF, Belas R (2010) Expression of tropodithietic acid biosynthesis is controlled by a novel autoinducer. J Bacteriol 192:4377–4387PubMedPubMedCentralCrossRefGoogle Scholar
  37. Geng H, Bruhn JB, Nielsen KF, Gram L, Belas R (2008) Genetic dissection of tropodithietic acid biosynthesis by marine roseobacters. Appl Environ Microbiol 74:1535–1545PubMedPubMedCentralCrossRefGoogle Scholar
  38. Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 178:6618–6622PubMedPubMedCentralCrossRefGoogle Scholar
  39. González JM, Kiene RP, Moran MA (1999) Transformation of sulfur compounds by an abundant lineage of marine bacteria in the α-subclass of the class proteobacteria. Appl Environ Microbiol 65:3810–3819PubMedPubMedCentralGoogle Scholar
  40. Gram L, Grossart HP, Schlingloff A, Kiorboe T (2002) Possible quorum sensing in marine snow bacteria: production of acylated homoserine lactones by Roseobacter strains isolated from marine snow. Appl Environ Microbiol 68:4111–4116PubMedPubMedCentralCrossRefGoogle Scholar
  41. Greer EM, Aebisher D, Greer A, Bentley R (2008) Computational studies of the tropone natural products, thiotropocin, tropodithietic acid, and troposulfenin. Significance of Thiocarbonyl-enol Tautomerism. J Org Chem 73:280–283PubMedCrossRefGoogle Scholar
  42. Harrigan GH, Luesch H, Yoshida WY, Moore RE, Nagle DG, Biggs J, Park PU, Paul VJ (1999) Tumonoic acids, novel metabolites from a cyanobacterial assemblage of Lyngbya majuscula and Schizothrix calcicola. J Nat Prod 62:464–467PubMedCrossRefGoogle Scholar
  43. Harvey EL, Deering RW, Rowley DC, El Gamal A, Schorn M, Moore BS, Johnson MD, Mincer TJ, Whalen KE (2016) A bacterial quorum-sensing precursor induces mortality in the marine coccolithophore, Emiliania huxleyi. Front Microbiol 7:59PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hasegawa Y, Martin JL, Giewat MW, Rooney-Varga JN (2007) Microbial community diversity in the phycosphere of natural populations of the toxic alga, Alexandrium fundyense. Environ Microbiol 9:3108–3121PubMedCrossRefGoogle Scholar
  45. Henke JM, Bassler BL (2004) Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J Bacteriol 186:6902–6914PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hense BA, Kuttler C, Müller J, Rothballer M, Hartmann A, Kreft J-U (2007) Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 5:230–239PubMedCrossRefGoogle Scholar
  47. Hmelo L, Van Mooy BAS (2009) Kinetic constraints on acylated homoserine lactone-based quorum sensing in marine environments. Aquat Microb Ecol 54:127–133CrossRefGoogle Scholar
  48. Hmelo LR, Mincer TJ, Van Mooy BA (2011) Possible influence of bacterial quorum sensing on the hydrolysis of sinking particulate organic carbon in marine environments. Environ Microbiol Rep 3:682–688PubMedCrossRefGoogle Scholar
  49. Holden MT, Ram Chhabra S, de Nys R, Stead P, Bainton NJ, Hill PJ, Manefield M, Kumar N, Labatte M, England D et al (1999) Quorum-sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram-negative bacteria. Mol Microbiol 33:1254–1266PubMedCrossRefGoogle Scholar
  50. Jatt AN, Tang K, Liu J, Zhang Z, Zhang XH (2015) Quorum sensing in marine snow and its possible influence on production of extracellular hydrolytic enzymes in marine snow bacterium Pantoea ananatis B9. FEMS Microbiol Ecol 91:1–13PubMedCrossRefGoogle Scholar
  51. Johnson WM, Kido Soule MC, Kujawinski EB (2016) Evidence for quorum sensing and differential metabolite production by a marine bacterium in response to DMSP. ISME J 10:2304–2316PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kaufmann GF, Sartorio R, Lee SH, Rogers CJ, Meijler MM, Moss JA, Clapham B, Brogan AP, Dickerson TJ, Janda KD (2005) Revisiting quorum sensing: discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones. Proc Natl Acad Sci USA 102:309–314Google Scholar
  53. Keller L, Surette MG (2006) Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 4:249–258PubMedCrossRefGoogle Scholar
  54. Kim JS, Kim YH, Seo YW, Park S (2007) Quorum sensing inhibitors from the red alga, Ahnfeltiopsis flabelliformis. Biotechnol Bioprocess 12:308–311CrossRefGoogle Scholar
  55. Kuo J-C, Chang Y-H, Chen T-Y, Chen Y-M (2014) Elucidation of anti-Vibrio factors associated with green alga Picochlorum sp. strain S1b. J Appl Phycol 27:257–265CrossRefGoogle Scholar
  56. Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798PubMedCrossRefGoogle Scholar
  57. Kwan JC, Meickle T, Ladwa D, Teplitski M, Paul V, Luesch H (2011) Lyngbyoic acid, a "tagged" fatty acid from a marine cyanobacterium, disrupts quorum sensing in Pseudomonas aeruginosa. Mol BioSyst 7:1205–1216PubMedPubMedCentralCrossRefGoogle Scholar
  58. Labbate M, Zhu H, Thung L, Bandara R, Larsen MR, Willcox MDP, Givskov M, Rice SA, Kjelleberg S (2007) Quorum-sensing regulation of adhesion in Serratia marcescens MG1 is surface dependent. J Bacteriol 189:2702–2711PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lazdunski AM, Ventre I, Sturgis JN (2004) Regulatory circuits and communication in gram-negative bacteria. Nat Rev Microbiol 2:581–592PubMedCrossRefGoogle Scholar
  60. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GSAB, Williams P (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143(12):3703–3711Google Scholar
  61. McLean RJ, Whiteley M, Stickler DJ, Fuqua WC (1997) Evidence of autoinducer activity in naturally occurring biofilms. FEMS Microbiol Lett 154:259-263PubMedCrossRefGoogle Scholar
  62. Meyer JL, Gunasekera SP, Scott RM, Paul VJ, Teplitski M (2016) Microbiome shifts and the inhibition of quorum sensing by black band disease cyanobacteria. ISME J 10:1204–1216PubMedCrossRefGoogle Scholar
  63. Miller TR, Belas R (2006) Motility is involved in Silicibacter sp TM1040 interaction with dinoflagellates. Environ Microbiol 8:1648–1659PubMedCrossRefGoogle Scholar
  64. Moran MA, Kujawinski EB, Stubbins A, Fatland R, Aluwihare LI, Buchan A, Crump BC, Dorrestein PC, Dyhrman ST, Hess NJ et al (2016) Deciphering Ocean carbon in a changing world. Proc Natl Acad Sci U S A 113:3143–3151PubMedPubMedCentralCrossRefGoogle Scholar
  65. Nadell CD, Xavier JB, Levin SA, Foster KR (2008) The evolution of quorum sensing in bacterial biofilms. PLoS Biol 6:e14PubMedPubMedCentralCrossRefGoogle Scholar
  66. Nakashima T, Miyazaki Y, Matsuyama Y, Muraoka W, Yamaguchi K, Oda T (2006) Producing mechanism of an algicidal compound against red tide phytoplankton in a marine bacterium gamma-proteobacterium. Appl Microbiol Biotechnol 73:684–690PubMedCrossRefGoogle Scholar
  67. Natrah F, Kenmegne MM, Wiyoto W, Sorgeloos P, Bossier P, Defoirdt T (2011) Effects of micro-algae commonly used in aquaculture on acyl-homoserine lactone quorum sensing. Aquaculture 317:53–57CrossRefGoogle Scholar
  68. Nealson KH (1977) Autoinduction of bacterial luciferase. Occurrence, mechanism and significance. Arch Microbiol 112:73–79PubMedCrossRefGoogle Scholar
  69. Neumann A, Patzelt D, Wagner-Döbler I, Schulz S (2013) Identification of new N-acylhomoserine lactone signalling compounds of Dinoroseobacter shibae DFL-12 T by overexpression of luxI genes. Chembiochem 14:2355–2361Google Scholar
  70. Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, Givens CE, Howard EC, King E, Oakley CA, Reisch CR et al (2010) Genome characteristics of a generalist marine bacterial lineage. ISME J 4:784–798PubMedCrossRefGoogle Scholar
  71. Onaka H, Ando N, Nihira T, Yamada Y, Beppu T, Horinouchi S (1995) Cloning and characterization of the A-factor receptor gene from Streptomyces griseus. J Bacteriol 177:6083–6092PubMedPubMedCentralCrossRefGoogle Scholar
  72. Paerl HW. 1982. Interactions with bacteria. In: Press UoC, (ed) editor. The biology of cyanobacteria. p 441–461.Google Scholar
  73. Parsek MR, Greenberg EP (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13:27–33PubMedCrossRefGoogle Scholar
  74. Patzelt D, Wang H, Buchholz I, Rohde M, Grobe L, Pradella S, Neumann A, Schulz S, Heyber S, Munch K et al (2013) You are what you talk: quorum sensing induces individual morphologies and cell division modes in Dinoroseobacter shibae. ISME J 7:2274–2286PubMedPubMedCentralCrossRefGoogle Scholar
  75. Paul C, Pohnert G (2011) Interactions of the algicidal bacterium Kordia algicida with diatoms: regulated protease excretion for specific algal lysis. PLoS One 6:e21032PubMedPubMedCentralCrossRefGoogle Scholar
  76. Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96:11229–11234PubMedPubMedCentralCrossRefGoogle Scholar
  77. Platt TG, Fuqua C (2010) What's in a name? The semantics of quorum sensing. Trends Microbiol 18:383–387PubMedPubMedCentralCrossRefGoogle Scholar
  78. Popat R, Cornforth DM, McNally L, Brown SP (2015) Collective sensing and collective responses in quorum-sensing bacteria. J R Soc Interface 12:20140882PubMedPubMedCentralCrossRefGoogle Scholar
  79. Porsby CH, Nielsen KF, Gram L (2008) Phaeobacter and Ruegeria species of the Roseobacter clade colonize separate niches in a Danish turbot (Scophthalmus maximus)-rearing farm and antagonize Vibrio anguillarum under different growth conditions. Appl Environ Microbiol 74:7356–7364PubMedPubMedCentralCrossRefGoogle Scholar
  80. Prol Garcia M, D'Alvise P, Rygaard A, Gram L (2014) Biofilm formation is not a prerequisite for production of the antibacterial compound tropodithietic acid in Phaeobacter inhibens DSM17395. J Appl Microbiol 117:1592–1600PubMedCrossRefGoogle Scholar
  81. Puskas A, Greenberg DP, Kaplan S, Schaefer AL (1997) A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. J Bacteriol 179:7530–7537PubMedPubMedCentralCrossRefGoogle Scholar
  82. Rajamani S, Bauer WD, Robinson JB, Farrow JM 3rd, Pesci EC, Teplitski M, Gao M, Sayre RT, Phillips DA (2008) The vitamin riboflavin and its derivative lumichrome activate the LasR bacterial quorum-sensing receptor. Mol Plant-Microbe Interact 21:1184–1192PubMedCrossRefGoogle Scholar
  83. Rajamani S, Teplitski M, Kumar A, Krediet CJ, Sayre RT, Bauer WD (2011) N-acyl homoserine lactone lactonase, AiiA, inactivation of quorum sensing agonists produced by Chlamydomonas reinhardtii (Chlorophyta) and characterization of aiiA transgenic algae. J Phycol 47(5):1219–1227Google Scholar
  84. Rao D, Webb JS, Kjelleberg S (2006) Microbial colonization and competition on the marine alga Ulva australis. Appl Environ Microbiol 72:5547–5555PubMedPubMedCentralCrossRefGoogle Scholar
  85. Rao D, Webb JS, Holmström C, Case R, Low A, Steinberg P, Kjelleberg S (2007) Low densities of epiphytic bacteria from the marine alga Ulva Australis inhibit settlement of fouling organisms. Appl Environ Microbiol 73:7844–7852PubMedPubMedCentralCrossRefGoogle Scholar
  86. Rasmussen TB, Manefield M, Andersen JB, Eberl L, Anthoni U, Christophersen C, Steinberg P, Kjelleberg S, Givskov M (2000) How Delisea Pulchra furanones affect quorum sensing and swarming motility in Serratia liquefaciens MG1. Microbiology 146:3237–3244PubMedCrossRefGoogle Scholar
  87. Redfield RJ (2002) Is quorum sensing a side effect of diffusion sensing? Trends Microbiol 10:365–370PubMedCrossRefGoogle Scholar
  88. Rivas MO, Vargas P, Riquelme CE (2010) Interactions of Botryococcus braunii cultures with bacterial biofilms. Microb Ecol 60:628–635PubMedCrossRefGoogle Scholar
  89. Romero M, Diggle SP, Heeb S, Camara M, Otero A (2008) Quorum quenching activity in Anabaena sp. PCC 7120: identification of AiiC, a novel AHL-acylase. FEMS Microbiol Lett 280:73–80Google Scholar
  90. Romero M, Martin-Cuadrado AB, Roca-Rivada A, Cabello AM, Otero A (2011) Quorum quenching in cultivable bacteria from dense marine coastal microbial communities. FEMS Microbiol Ecol 75:205–217PubMedCrossRefGoogle Scholar
  91. Rooney-Varga JN, Giewat MW, Savin MC, Sood S, LeGresley M, Martin JL (2005) Links between phytoplankton and bacterial community dynamics in a coastal marine environment. Microb Ecol 49:163–175PubMedCrossRefGoogle Scholar
  92. Rosenberg E, Keller KH, Dworkin M (1977) Cell density-dependent growth of Myxococcus xanthus on casein. J Bacteriol 129:770–777PubMedPubMedCentralGoogle Scholar
  93. Sapp M, Schwaderer AS, Wiltshire KH, Hoppe HG, Gerdts G, Wichels A (2007) Species-specific bacterial communities in the phycosphere of microalgae? Microb Ecol 53:683–699PubMedCrossRefGoogle Scholar
  94. Schaefer AL, Greenberg EP, Oliver CM, Oda Y, Huang JJ, Bittan-Banin G, Peres CM, Schmidt S, Juhaszova K, Sufrin JR et al (2008) A new class of homoserine lactone quorum-sensing signals. Nature 454:595–599PubMedCrossRefGoogle Scholar
  95. Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7:1753–1760PubMedCrossRefGoogle Scholar
  96. Schertzer JW, Boulette ML, Whiteley M (2009) More than a signal: non-signaling properties of quorum sensing molecules. Trends Microbiol 17:189–195PubMedCrossRefGoogle Scholar
  97. Schulz S (2014) A new bacterial chemical signal: mapping the chemical space used for communication. Chembiochem 15:498–500PubMedCrossRefGoogle Scholar
  98. Seyedsayamdost MR, Carr G, Kolter R, Clardy J (2011a) Roseobacticides: small molecule modulators of an algal-bacterial symbiosis. J Am Chem Soc 133:18343–18349PubMedPubMedCentralCrossRefGoogle Scholar
  99. Seyedsayamdost MR, Case RJ, Kolter R, Clardy J (2011b) The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat Chem 3:331–335PubMedPubMedCentralCrossRefGoogle Scholar
  100. Sharif DI, Gallon J, Smith CJ, Dudley E (2008) Quorum sensing in cyanobacteria: N-octanoyl-homoserine lactone release and response, by the epilithic colonial cyanobacterium Gloeothece PCC6909. ISME J 2:1171–1182Google Scholar
  101. Sheridan CC, Steinberg DK, Kling GW (2002) The microbial and metazoan community associated with colonies of Trichodesmium spp.: a quantitative survey. J Plankton Res 24:913–922CrossRefGoogle Scholar
  102. Sieburth JM, Smetacek V, Lenz J (1978) Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol Oceanogr 23:1256–1263CrossRefGoogle Scholar
  103. Singh RP (2015) Attenuation of quorum sensing-mediated virulence in gram-negative pathogenic bacteria: implications for the post-antibiotic era. Med Chem Commun 6:259–272CrossRefGoogle Scholar
  104. Skerratt JH, Bowman JP, Hallegraeff G, James S, Nichols PD (2002) Algicidal bacteria associated with blooms of a toxic dinoflagellate in a temperate Australian estuary. Mar Ecol Prog Ser 244:1–15CrossRefGoogle Scholar
  105. Slightom RN, Buchan A (2009) Surface colonization by marine roseobacters: integrating genotype and phenotype. Appl Environ Microbiol 75:6027–6037PubMedPubMedCentralCrossRefGoogle Scholar
  106. Smith RS, Iglewski BH (2003) P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6:56–60Google Scholar
  107. Sohn JH, Lee JH, Yi H, Chun J, Bae KS, Ahn TY, Kim SJ (2004) Kordia algicida gen. Nov., sp. nov., an algicidal bacterium isolated from red tide. Int J Syst Evol Microbiol 54:675–680PubMedCrossRefGoogle Scholar
  108. Teplitski M, Chen H, Rajamani S, Gao M, Merighi M, Sayre RT, Robinson JB, Rolfe BG, Bauer WD (2004) Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacteria. Plant Physiol 134:137–146Google Scholar
  109. Thiel V, Brinkhoff T, Dickschat JS, Wickel S, Grunenberg J, Wagner-Döbler I, Simon M, Schulz S (2010) Identification and biosynthesis of tropone derivatives and sulfur volatiles produced by bacteria of the marine Roseobacter clade. Org Biomol Chem 8:234–246PubMedCrossRefGoogle Scholar
  110. Thole S, Kalhoefer D, Voget S, Berger M, Engelhardt T, Liesegang H, Wollherr A, Kjelleberg S, Daniel R, Simon M et al (2012) Phaeobacter gallaeciensis genomes from globally opposite locations reveal high similarity of adaptation to surface life. ISME J 6:2229–2244PubMedPubMedCentralCrossRefGoogle Scholar
  111. Tuomainen J, Hietanen S, Kuparinen J, Martikainen PJ, Servomaa K (2006) Community structure of the bacteria associated with Nodularia sp. (cyanobacteria) aggregates in the Baltic Sea. Microb Ecol 52:513–522PubMedCrossRefGoogle Scholar
  112. Van Mooy BA, Hmelo LR, Sofen LE, Campagna SR, May AL, Dyhrman ST, Heithoff A, Webb EA, Momper L, Mincer TJ (2012) Quorum sensing control of phosphorus acquisition in Trichodesmium consortia. ISME J 6:422–429PubMedCrossRefGoogle Scholar
  113. Wagner-Döbler I, Thiel V, Eberl L, Allgaier M, Bodor A, Meyer S, Ebner S, Hennig A, Pukall R, Schulz S (2005) Discovery of complex mixtures of novel long-chain quorum sensing signals in free-living and host-associated marine alphaproteobacteria. Chembiochem 6:2195–2206PubMedCrossRefGoogle Scholar
  114. Wang H, Tomasch J, Jarek M, Wagner-Döbler I (2014) A dual-species co-cultivation system to study the interactions between Roseobacters and dinoflagellates. Front Microbiol 5:311PubMedPubMedCentralGoogle Scholar
  115. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346PubMedCrossRefGoogle Scholar
  116. West SA, Winzer K, Gardner A, Diggle SP (2012) Quorum sensing and the confusion about diffusion. Trends Microbiol 20:586–594PubMedCrossRefGoogle Scholar
  117. Wood DW, Pierson LS (1996) The phzI gene of pseudomonas aureofaciens 30-84 is responsible for the production of a diffusible signal required for phenazine antibiotic production. Gene 168:49–53PubMedCrossRefGoogle Scholar
  118. Yates EA, Philipp B, Buckley C, Atkinson S, Chhabra SR, Sockett RE, Goldner M, Dessaux Y, Camara M, Smith H et al (2002) N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 70:5635–5646Google Scholar
  119. Zhai C, Zhang P, Shen F, Zhou C, Liu C (2012) Does Microcystis aeruginosa have quorum sensing? FEMS Microbiol Lett 336:38–44PubMedCrossRefGoogle Scholar
  120. Zhang HB, Wang LH, Zhang LH (2002) Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 99:4638–4643PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Interactions-Hôtes-Pathogènes-Environnements (IHPE), Ifremer, CNRS, UPVDUniversité de Montpellier, UMR 5244MontpellierFrance
  2. 2.Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire OcéanologiqueBanyuls-sur-MerFrance
  3. 3.Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie Intégrative des Organismes Marins (BIOM), Observatoire OcéanologiqueBanyuls-sur-MerFrance

Personalised recommendations