Journal of Chemical Ecology

, Volume 42, Issue 12, pp 1226–1236 | Cite as

Inducible De Novo Biosynthesis of Isoflavonoids in Soybean Leaves by Spodoptera litura Derived Elicitors: Tracer Techniques Aided by High Resolution LCMS

  • Ryu Nakata
  • Yuki Kimura
  • Kenta Aoki
  • Naoko Yoshinaga
  • Masayoshi Teraishi
  • Yutaka Okumoto
  • Alisa Huffaker
  • Eric A. Schmelz
  • Naoki MoriEmail author


Isoflavonoids are a characteristic family of natural products in legumes known to mediate a range of plant-biotic interactions. For example, in soybean (Glycine max: Fabaceae) multiple isoflavones are induced and accumulate in leaves following attack by Spodoptera litura (Lepidoptera: Noctuidae) larvae. To quantitatively examine patterns of activated de novo biosynthesis, soybean (Var. Enrei) leaves were treated with a combination of plant defense elicitors present in S. litura gut content extracts and L-α-[13C9, 15N]phenylalanine as a traceable isoflavonoid precursor. Combined treatments promoted significant increases in 13C-labeled isoflavone aglycones (daidzein, formononetin, and genistein), 13C-labeled isoflavone 7-O-glucosides (daidzin, ononin, and genistin), and 13C-labeled isoflavone 7-O-(6″-O-malonyl-β-glucosides) (malonyldaidzin, malonylononin, and malonylgenistin). In contrast levels of 13C-labeled flavones and flavonol (4′,7-dihydroxyflavone, kaempferol, and apigenin) were not significantly altered. Curiously, application of fatty acid-amino acid conjugate (FAC) elicitors present in S. litura gut contents, namely N-linolenoyl-L-glutamine and N-linoleoyl-L-glutamine, both promoted the induced accumulation of isoflavone 7-O-glucosides and isoflavone 7-O-(6″-O-malonyl-β-glucosides), but not isoflavone aglycones in the leaves. These results demonstrate that at least two separate reactions are involved in elicitor-induced soybean leaf responses to the S. litura gut contents: one is the de novo biosynthesis of isoflavone conjugates induced by FACs, and the other is the hydrolysis of the isoflavone conjugates to yield isoflavone aglycones. Gut content extracts alone displayed no hydrolytic activity. The quantitative analysis of isoflavone de novo biosynthesis, with respect to both aglycones and conjugates, affords a useful bioassay system for the discovery of additional plant defense elicitor(s) in S. litura gut contents that specifically promote hydrolysis of isoflavone conjugates.


Plant-insect interaction Plant induced resistance Insect-produced elicitors Fatty acid-amino acid conjugates (FACs) Isoflavones Insect herbivory Secondary metabolites Lepidoptera Noctuidae 



This research was funded by Grants-in-Aids for Scientific Research (No. 24120006) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Supplementary material

10886_2016_786_MOESM1_ESM.pptx (524 kb)
ESM 1 (PPTX 524 kb)


  1. Akashi T, Aoki T, Ayabe S (2005) Molecular and biochemical characterization of 2-hydroxyisoflavone dehydratase. Involvement of carboxylesterase-like proteins in leguminous isoflavones biosynthesis. Plant Physiol 137:882–891CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alborn HT, Hansen TV, Jones TH, Bennett DC, Tumlinson JH, Schmelz EA, Teal PEA (2007) Disulfooxy fatty acids from the American bird grasshopper Schistocerca Americana, elicitors of plant volatiles. Proc Natl Acad Sci U S A 104:12976–12981CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alborn HT, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949CrossRefGoogle Scholar
  4. Anderson ØM, Markham KR (2006) Flavonoids: chemistry, biochemistry and applications. CRC Press, Boca Raton, FLGoogle Scholar
  5. Barz W, Welle R (1992) Biosynthesis and metabolism of isoflavones and pterocarpan phytoalexins in chickpea, soybean and phytopathogenic fungi. In: Stafford HA, Ibrahim RK (eds) Recent advances in phytochemistry, Vol. 26. Phenolic metabolism in plants. Plenum Press, New York, pp 139–164Google Scholar
  6. Bricchi I, Occipinti A, Bertea CM, Zebelo SA, Brillada C, Maule AJ, Maffei ME (2013) Separation of early and late response to herbivory in Arabidopsis by changing plasmodesmal function. Plant J 73:14–25CrossRefPubMedGoogle Scholar
  7. Caballero P, Smith CM, Fronczek FR, Fischer NH (1986) Isoflavones from an insect-resistant variety of soybean and the molecular structure of afrormosin. J Nat Prod 49:1126–1129CrossRefGoogle Scholar
  8. Day AJ, Dupont MS, Ridley S, Rhodes M, Rhodes MJC, Morgan MRA, Williamson G (1998) Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver β-glucosidase activity. FEBS Lett 436:71–75CrossRefPubMedGoogle Scholar
  9. de Rijke E, Zappey H, Ariese F, Gooijer C (2004) Flavonoids in Leguminosae: Analysis of extracts of T. pratense L., T. dubium L., T. repens L., and L. corniculatus L. leaves using liquid chromatography with UV, mass spectrometric and fluorescence detection. Anal Bioanal Chem 378:995–1006CrossRefPubMedGoogle Scholar
  10. Edwards R, Triller SA, Parry AD (1997) The effect of plant age and nodulation on the isoflavonoid content of red clover (Trifolium pratense). J Plant Physiol 150:603–610CrossRefGoogle Scholar
  11. Farag MA, Huhman DV, Lei Z, Sumner LW (2007) Metabolic profiling and systematic identification of flavonoids and isoflavonoids in roots and cell suspension cultures of Medicago truncatula using HPLC-UV-ESI-MS and GC-MS. Phytochemistry 68:342–354CrossRefPubMedGoogle Scholar
  12. Fischer DC, Kogan M, Paxton J (1990) Effect of glyceollin, a soybean phytoalexin, on feeding by three phytophagous beetles (Coleoptera: Coccinellidae and Chrysomelidae): Dose versus response. Environ Entomol 19:1278–1282CrossRefGoogle Scholar
  13. Hakamatsuka T, Mori K, Ishida S, Ebizuka Y, Sankawa U (1998) Purification of 2-hydroxyisoflavanone dehydratase from the cell cultures of Pueraria lobata. Phytochemistry 49:497–505CrossRefGoogle Scholar
  14. Harborne JB, Mabry TJ, Mabry H (1975) The flavonoids. Chapman and Hall, LondonCrossRefGoogle Scholar
  15. Hashim MF, Hakamatsuka T, Ebizuka Y, Sankawa U (1990) Reaction mechanism of oxidative rearrangement of flavone in isoflavones biosynthesis. FEBS Lett 271:219–222CrossRefPubMedGoogle Scholar
  16. Huffaker A, Pearce G, Veyrat N, Erb M, Turling TCJ, Sartor R, Shen A, Briggs S, Vaughan MM, Alborn HT, Teal PEA, Schmels EA (2013) Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense. Proc Natl Acad Sci U S A 110:5707–5712CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jones P, Vogt T (2001) Glycosyltransferases in secondary plant metabolism: Tranquilizers and stimulant controllers. Planta 213:164–174CrossRefPubMedGoogle Scholar
  18. Jung W, Yu O, Lau SM, O’Keefe DP, Odell J, Fader G, McGonigle B (2000) Identification and expression of isoflavones synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat Biotechnol 18:208–212CrossRefPubMedGoogle Scholar
  19. Klejdus B, Vitamvásová-Štěrbová D, Kubáň V (2001) Identification of isoflavone conjugates in red clover (Trifolium pratense) by liquid chromatography-mass spectrometry after two-dimensional solid-phase extraction. Anal Chim Acta 450:81–97CrossRefGoogle Scholar
  20. Koch T, Krumm T, Jung V, Engelberth J, Boland W (1999) Differential induction of plant volatile biosynthesis in the lima bean by early and late intermediates the octadecanoid-signaling pathway. Plant Physiol 121:153–162CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kochs G, Grisebach H (1986) Enzymic synthesis of isoflavones. Eur J Biochem 155:311–318CrossRefPubMedGoogle Scholar
  22. Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal 2013:1–16Google Scholar
  23. Lin LZ, He XG, Lindenmaier M, Yang J, Cleary M, Qiu SX, Cordell GA (2000) LC-ESI-MS study of flavonoid glycoside malonates of red clover (Trifolium Pratense). J Agric Food Chem 48:354–365CrossRefPubMedGoogle Scholar
  24. Mattiacci L, Dicke M, Posthumus MA (1995) Beta-glucosidase: an elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proc Natl Acad Sci U S A 92:2036–2040CrossRefPubMedPubMedCentralGoogle Scholar
  25. Murakami S, Nakata R, Aboshi T, Yoshinaga N, Teraishi M, Okumoto Y, Ishihara A, Morisaka H, Huffaker A, Schmelz EA, Mori N (2014) Insect-induced daidzein, formononetin and their conjugates in soybean leaves. Metabolites 4:532–546CrossRefPubMedPubMedCentralGoogle Scholar
  26. Mori N, Yoshinaga N, Sawada Y, Fukui M, Shimoda M, Fujisaki K, Nishida R, Kuwahara Y (2003) Identification of volicitin-related compounds from regurgitant of Lepidopteran caterpillars. Biosci Biotechnol Biochem 67:1168–1171CrossRefPubMedGoogle Scholar
  27. Roda A, Halitschke R, Stepphum A, Baldwin IT (2004) Individual variability in herbivore-specific elicitors from the plant’s perspective. Mol Ecol 13:2421–2433CrossRefPubMedGoogle Scholar
  28. Sawada Y, Ayabe S (2005) Multiple mutagenesis of P450 isoflavonoid synthase reveals a key active-site residue. Biochem Biophys Res Commun 330:907–913CrossRefPubMedGoogle Scholar
  29. Sawada Y, Kinoshita K, Akashi T, Aoki T, Ayabe S (2002) Key amino acid residues required for aryl migration catalysed by the cytochrome P450 2-hydroxyisoflavanone synthase. Plant J 31:555–564CrossRefPubMedGoogle Scholar
  30. Schmelz EA (2015) Impacts of insect oral secretions on defoliation-induced plant defense. Curr Opin Insect Sci 9:7–15CrossRefGoogle Scholar
  31. Schmelz EA, Carroll MJ, LeClere S, Phipps SM, Meredith J, Chourey PS, Alborn HT, Tumlinsom JH, Teal PEA (2006) Fragments of ATP synthase mediate plant perception of insect attack. Proc Natl Acad Sci U S A 103:8894–8899CrossRefPubMedPubMedCentralGoogle Scholar
  32. Schmelz EA, Engelberth J, Alborn HT, Tumlinsom JH, Teal PEA (2009) Phytohormone-based activity mapping of insect herbivore-produced elicitors. Proc Natl Acad Sci U S A 106:653–657CrossRefPubMedPubMedCentralGoogle Scholar
  33. Schmelz EA, LeClere S, Carroll MJ, Alborn HT, Teal PEA (2012) Cowpea chloroplastic ATP synthase is the source of multiple plant defense elicitors during insect herbivory. Plant Physiol 144:793–805CrossRefGoogle Scholar
  34. Steele CL, Gijzen M, Qutob D, Dixon RA (1999) Molecular characterization of the enzyme catalyzing the aryl migration reaction of isoflavonoid biosynthesis in soybean. Arch Biochem Biophys 367:146–150CrossRefPubMedGoogle Scholar
  35. Suzuki H, Takahashi S, Watanabe R, Fukushima Y, Fujita N, Noguchi A, Yokoyama R, Nishitani K, Nishino T, Nakayama T (2006) An isoflavone conjugate-hydrolyzing β-glucosidase from the roots of soybean (Glycine max) seedlings: Purification, gene cloning, phylogenetics, and cellular localization. J Biol Chem 281:30251–30259CrossRefPubMedGoogle Scholar
  36. Tahara S, Ibrahim RK (1995) Prenylated isoflavonoids - an update. Phytochemistry 38:1073–1094CrossRefGoogle Scholar
  37. Turling TCJ, Alborn HT, Loughrin JH, Tumlinson JH (2000) Volicitin, an elicitor of maize volatiles in oral secretion of Spodoptera Exigua isolation and bioactivity. J Chem Ecol 26:189–202CrossRefGoogle Scholar
  38. Wu Q, Wang M, Simon JE (2003) Determination of isoflavones in red clover and related species by high-performance liquid chromatography combined with ultraviolet and mass spectrometric detection. J Chromatogr A 1016:195–209CrossRefPubMedGoogle Scholar
  39. Yoshinaga N, Aboshi T, Abe H, Nishida R, Alborn HT, Tumlinson JH, Mori N (2008) Active role of fatty acid amino acid conjugates in nitrogen metabolism in Spodoptera litura larvae. Proc Natl Acad Sci U S A 105:18058–18063CrossRefPubMedPubMedCentralGoogle Scholar
  40. Yoshinaga N, Alborn HT, Nakanishi T, Suckling DM, Nishida R, Tumlinson JH, Mori N (2010) Fatty acid-amino acid conjugates diversification in Lepidopteran caterpillars. J Chem Ecol 36:319–325CrossRefPubMedGoogle Scholar
  41. Zhou YY, Lou SH, Yi TS, Lou Q, Hua J, Liu Y, Li SH (2011) Secondary metabolites from Glycine soja and their growth inhibitory effects against Spodoptera litura. J Agric Food Chem 59:6004–6010CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ryu Nakata
    • 1
  • Yuki Kimura
    • 1
  • Kenta Aoki
    • 1
  • Naoko Yoshinaga
    • 1
  • Masayoshi Teraishi
    • 1
  • Yutaka Okumoto
    • 1
  • Alisa Huffaker
    • 2
  • Eric A. Schmelz
    • 2
  • Naoki Mori
    • 1
    Email author
  1. 1.Graduate School of AgricultureKyoto UniversityKyotoJapan
  2. 2.Section of Cell and Developmental BiologyUniversity of California at San DiegoLa JollaUSA

Personalised recommendations