Journal of Chemical Ecology

, Volume 42, Issue 9, pp 919–930 | Cite as

Olfactory Mechanisms for Discovery of Odorants to Reduce Insect-Host Contact

  • Jonathan T. Clark
  • Anandasankar RayEmail author


Insects have developed highly sophisticated and sensitive olfactory systems to find animal or plant hosts for feeding. Some insects vector pathogens that cause diseases in hundreds of millions of people and destroy billions of dollars of food products every year. There is great interest, therefore, in understanding how the insect olfactory system can be manipulated to reduce their contact with hosts. Here, we review recent advances in our understanding of insect olfactory detection mechanisms, which may serve as a foundation for designing insect control programs based on manipulation of their behaviors by using odorants. Because every insect species has a unique set of olfactory receptors and olfactory-mediated behaviors, we focus primarily on general principles of odor detection that potentially apply to most insects. While these mechanisms have emerged from studies on model systems for study of insect olfaction, such as Drosophila melanogaster, they provide a foundation for discovery of odorants to repel vector insects or reduce their host-seeking behavior.


Insect olfaction Odorant receptors Repellents DEET Chemical informatics 



We thank Christine Pham for helpful suggestions. We acknowledge funding support from the National Institutes of Health (R01AI087785, R01DC014092). A. Ray is founder of Sensorygen Inc.


  1. Abd-Ella A, Stankiewicz M, Mikulska K, Nowak W, Pennetier C, Goulu M, Fruchart-Gaillard C, Licznar P, Apaire-Marchais V, List O, Corbel V (2015) The repellent DEET potentiates carbamate effects via insect muscarinic receptor interactions: an alternative strategy to control insect vector-borne diseases. PLoS One 10:e0126406CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ai M, Min S, Grosjean Y, Leblanc C, Bell R, Benton R, Suh GS (2010) Acid sensing by the Drosophila olfactory system. Nature 468:691–695CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bell JS, Wilson R (2016) Behavior reveals selective summation and max pooling among olfactory processing channels. Neuron 91:425–438CrossRefPubMedGoogle Scholar
  4. Bellmann D, Richardt A, Freyberger R, Nuwal N, Schwarzel M, Fiala A, Stortkuhl KF (2010) Optogenetically induced olfactory stimulation in Drosophila larvae reveals the neuronal basis of odor-aversion behavior. Front Behav Neurosci 4:27CrossRefPubMedPubMedCentralGoogle Scholar
  5. Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB (2009) Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136:149–162CrossRefPubMedPubMedCentralGoogle Scholar
  6. Beshel J, Zhong Y (2013) Graded encoding of food odor value in the Drosophila brain. J Neurosci 33:15693–15704CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bhandawat V, Olsen SR, Gouwens NW, Schlief ML, Wilson RI (2007) Sensory processing in the Drosophila antennal lobe increases reliability and separability of ensemble odor representations. Nat Neurosci 10:1474–1482CrossRefPubMedPubMedCentralGoogle Scholar
  8. Billeter JC, Atallah J, Krupp JJ, Millar JG, Levine JD (2009) Specialized cells tag sexual and species identity in Drosophila melanogaster. Nature 461:987–991CrossRefPubMedGoogle Scholar
  9. Bodin A, Vinauger C, Lazzari CR (2009) Behavioural and physiological state dependency of host seeking in the blood-sucking insect Rhodnius prolixus. J Exp Biol 212:2386–2393CrossRefPubMedGoogle Scholar
  10. Bohbot JD, Dickens JC (2010) Insect repellents: modulators of mosquito odorant receptor activity. PLoS One 5:e12138CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bohbot JD, Dickens JC (2012) Odorant receptor modulation: ternary paradigm for mode of action of insect repellents. Neuropharmacology 62:2086–2095CrossRefPubMedGoogle Scholar
  12. Boyle SM, Guda T, Pham CK, Tharadra SK, Dahanukar A, Ray A (2016a) Natural DEET substitutes that are strong olfactory repellents of mosquitoes and flies. bioRxiv doi: 10.1101/060178
  13. Boyle SM, McInally S, Tharadra S, Ray A (2016b) Short-term memory trace mediated by termination kinetics of olfactory receptor. Sci Rep 6:19863CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bracker LB et al. (2013) Essential role of the mushroom body in context-dependent CO2 avoidance in Drosophila. Curr Biol 23:1228–1234CrossRefPubMedGoogle Scholar
  15. Brieger G, Butterworth FM (1970) Drosophila melanogaster: identity of male lipid in reproductive system. Science 167:1262CrossRefPubMedGoogle Scholar
  16. Butterworth FM (1969) Lipids of Drosophila: a newly detected lipid in the male. Science 163:1356–1357CrossRefPubMedGoogle Scholar
  17. Cachero S, Ostrovsky AD, JY Y, Dickson BJ, Jefferis GS (2010) Sexual dimorphism in the fly brain. Curr Biol 20:1589–1601CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cardé RT, Gibson G (2010) Long-distance orientation of mosquitoes to host odours and other host-related cues. In: Takken W, Knols BGJ (eds) Ecology of vector-borne diseases, vol 2. Wageningen Academic Publishers, Wageningen, pp. 115–141Google Scholar
  19. Charlwood D (2003) Did Herodotus describe the first airborne use of mosquito repellents? Trends Parasitol 19:555–556CrossRefPubMedGoogle Scholar
  20. Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson JR (1999) A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22:327–338CrossRefPubMedGoogle Scholar
  21. Clyne P, Warr C, Carlson J (2000) Candidate taste receptors in Drosophila. Science 287:1830–1834CrossRefPubMedGoogle Scholar
  22. Corbel V, Stankiewicz M, Pennetier C, Fournier D, Stojan J, Girard E, Dimitrov M, Molgó J, Hougard JM, Lapied B (2009) Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent DEET. BMC Biol 7:47CrossRefPubMedPubMedCentralGoogle Scholar
  23. Coyne JA, Crittenden AP, Mah K (1994) Genetics of a pheromonal difference contributing to reproductive isolation in Drosophila. Science 265:1461–1464CrossRefPubMedGoogle Scholar
  24. Datta SR, Vasconcelos ML, Ruta V, Luo S, Wong A, Demir E, Flores J, Balonze K, Dickson BJ, Axel R (2008) The Drosophila pheromone cVA activates a sexually dimorphic neural circuit. Nature 452:473–477CrossRefPubMedGoogle Scholar
  25. de Bruyne M, Clyne PJ, Carlson JR (1999) Odor coding in a model olfactory organ: the Drosophila maxillary palp. J Neurosci 19:4520–4532PubMedGoogle Scholar
  26. de Bruyne M, Foster K, Carlson JR (2001) Odor coding in the Drosophila antenna. Neuron 30:537–552CrossRefPubMedGoogle Scholar
  27. DeGennaro M, McBride CS, Seeholzer L, Nakagawa T, Dennis EJ, Goldman C, Jasinskiene N, James AA, Vosshall LB (2013) Orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature 498:487–491CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ditzen M, Pellegrino M, Vosshall LB (2008) Insect odorant receptors are molecular targets of the insect repellent DEET. Science 319:1838–1842CrossRefPubMedGoogle Scholar
  29. Ebrahim SAM, Dweck H, Stökl J, Hofferberth JE, Trona F, Weniger K, Rybak J, Seki Y, Stensmyr MC, Sachse S, Hansson BS, Knaden M (2015) Drosophila avoids parasitoids by sensing their semiochemicals via a dedicated olfactory circuit. PLoS Biology 13(12):e1002318Google Scholar
  30. Faucher C, Forstreuter M, Hilker M, de Bruyne M (2006) Behavioral responses of Drosophila to biogenic levels of carbon dioxide depend on life-stage, sex and olfactory context. J Exp Biol 209:2739–2748CrossRefPubMedGoogle Scholar
  31. Fishilevich E, Domingos AI, Asahina K, Naef F, Vosshall LB, Louis M (2005) Chemotaxis behavior mediated by single larval olfactory neurons in Drosophila. Curr Biol 15:2086–2096CrossRefPubMedGoogle Scholar
  32. Galizia CG, Sachse S, Rappert A, Menzel R (1999) The glomerular code for odor representation is species specific in the honeybee Apis mellifera. Nature Neurosci 2:473–478CrossRefPubMedGoogle Scholar
  33. Gao XJ, Clandinin TR, Luo L (2015) Extremely sparse olfactory inputs are sufficient to mediate innate aversion in Drosophila. PLoS One 10:e0125986CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gillies MT (1980) The role of carbon dioxide in host-finding by mosquitoes: a review. Bull Entomol Res 70:525–532CrossRefGoogle Scholar
  35. Guda T, Kain P, Sharma KR, Pham CK, Ray A (2015) Repellent compound with larger protective zone than DEET identified through activity-screening of Ir40a neurons, does not require Or function. bioRxiv doi: 10.1101/017145
  36. Ha TS, Smith DP (2006) A pheromone receptor mediates 11-cis-vaccenyl acetate-induced responses in Drosophila. J Neurosci 26:8727–8733CrossRefPubMedGoogle Scholar
  37. Hallem EA, Carlson JR (2006) Coding of odors by a receptor repertoire. Cell 125:143–160CrossRefPubMedGoogle Scholar
  38. James AT, Martin AJ (1952) Gas-liquid partition chromatography: the separation and micro-estimation of ammonia and the methylamines. Biochem J 52:238–242CrossRefPubMedPubMedCentralGoogle Scholar
  39. Jefferis GS, Marin EC, Stocker RF, Luo L (2001) Target neuron prespecification in the olfactory map of Drosophila. Nature 414:204–208CrossRefPubMedGoogle Scholar
  40. Jones WD, Cayirlioglu P, Kadow IG, Vosshall LB (2007) Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 445:86–90CrossRefPubMedGoogle Scholar
  41. Jones PL, Pask GM, Rinker DC, Zwiebel LJ (2011) Functional agonism of insect odorant receptor ion channels. Proc Natl Acad Sci U S A 108:8821–8825CrossRefPubMedPubMedCentralGoogle Scholar
  42. Jones PL, Pask GM, Romaine IM, Taylor RW, Reid PR, Waterson AG, Sulikowski GA, Zwiebel LJ (2012) Allosteric antagonism of insect odorant receptor ion channels. PLoS One 7:e30304CrossRefPubMedPubMedCentralGoogle Scholar
  43. Katritzky AR, Wang Z, Slavov S, Tsikolia M, Dobchev D, Akhmedov NG, Hall CD, Bernier UR, Clark GG, Linthicum KJ (2008) Synthesis and bioassay of improved mosquito repellents predicted from chemical structure. Proc Natl Acad Sci U S A 105:7359–7364CrossRefPubMedPubMedCentralGoogle Scholar
  44. Katritzky AR, Wang Z, Slavov S, Dobchev DA, Hall CD, Tsikolia M, Bernier UR, Elejalde NM, Clark GG, Linthicum KJ (2010) Novel carboxamides as potential mosquito repellents. J Med Entomol 47:924–938CrossRefPubMedGoogle Scholar
  45. Ko KI, Root CM, Lindsay SA, Zaninovich OA, Shepherd AK, Wasserman SA, Kim SM, Wang JW (2015) Starvation promotes concerted modulation of appetitive olfactory behavior via parallel neuromodulatory circuits. Elife 4:e08298CrossRefPubMedCentralGoogle Scholar
  46. Kohl J, Ostrovsky AD, Frechter S, Jefferis GS (2013) A bidirectional circuit switch reroutes pheromone signals in male and female brains. Cell 155:1610–1623CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kreher SA, Kwon JY, Carlson JR (2005) The molecular basis of odor coding in the Drosophila Larva. Neuron 46:445–456CrossRefPubMedGoogle Scholar
  48. Kreher SA, Mathew D, Kim J, Carlson JR (2008) Translation of sensory input into behavioral output via an olfactory system. Neuron 59:110–124CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kurtovic A, Widmer A, Dickson BJ (2007) A single class of olfactory neurons mediates behavioural responses to a Drosophila Sex pheromone. Nature 446:542–546Google Scholar
  50. Kwon Y, Kim SH, Ronderos DS, Lee Y, Akitake B, Woodward OM, Guggino WB, Smith DP, Montell C (2010) Drosophila TRPA1 channel is required to avoid the naturally occurring insect repellent citronellal. Curr Biol 20:1672–1678CrossRefPubMedPubMedCentralGoogle Scholar
  51. Legeay S, Clere N, Hilairet G, Do QT, Bernard P, Quignard JF, Apaire-Marchais V, Lapied B, Faure S (2016) The insect repellent N,N-diethyl- m-toluamide (DEET) induces angiogenesis via allosteric modulation of the M3 muscarinic receptor in endothelial cells. Sci Rep 6:28546CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lin HH, Chu LA, TF F, Dickson BJ, Chiang AS (2013) Parallel neural pathways mediate CO2 avoidance responses in Drosophila. Science 340:1338–1341CrossRefPubMedGoogle Scholar
  53. Lu T, Qiu YT, Wang G, Kwon JY, Rutzler M, Kwon HW, Pitts RJ, van Loon JJ, Takken W, Carlson JR, Zwiebel LJ (2007) Odor coding in the maxillary palp of the malaria vector mosquito Anopheles gambiae. Curr Biol 17:1533–1544CrossRefPubMedPubMedCentralGoogle Scholar
  54. Martelli C, Carlson JR, Emonet T (2013) Intensity invariant dynamics and odor-specific latencies in olfactory receptor neuron response. J Neurosci 33:6285–6297CrossRefPubMedPubMedCentralGoogle Scholar
  55. Mathew D, Martelli C, Kelley-Swift E, Brusalis C, Gershow M, Samuel AD, Emonet T, Carlson JR (2013) Functional diversity among sensory receptors in a Drosophila olfactory circuit. Proc Natl Acad Sci U S A 110:E2134–E2143CrossRefPubMedPubMedCentralGoogle Scholar
  56. Mccabe ET, Barthel WF, Gertler SI, Hall SA (1954) Insect repellents. 3. N,N-Diethylamides. J Org Chem 19:493–498CrossRefGoogle Scholar
  57. Ng M, Roorda RD, Lima SQ, Zemelman BV, Morcillo P, Miesenbock G (2002) Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron 36:463–474CrossRefPubMedGoogle Scholar
  58. Oliferenko PV, Oliferenko AA, Poda GI, Osolodkin DI, Pillai GG, Bernier UR, Tsikolia M, Agramonte NM, Clark GG, Linthicum KJ, Katritzky AR (2013) Promising Aedes aegypti repellent chemotypes identified through integrated QSAR, virtual screening, synthesis, and bioassay. PLoS One 8:e64547CrossRefPubMedPubMedCentralGoogle Scholar
  59. Pask GM, Bobkov YV, Corey EA, Ache BW, Zwiebel LJ (2013) Blockade of insect odorant receptor currents by amiloride derivatives. Chem Senses 38:221–229CrossRefPubMedPubMedCentralGoogle Scholar
  60. Pellegrino M, Steinbach N, Stensmyr MC, Hansson BS, Vosshall LB (2011) A natural polymorphism alters odour and DEET sensitivity in an insect odorant receptor. Nature 478:511–514CrossRefPubMedPubMedCentralGoogle Scholar
  61. Pham CK, Ray A (2015) Conservation of olfactory avoidance in Drosophila species and identification of repellents for Drosophila suzukii. Sci Reports 5:11527CrossRefGoogle Scholar
  62. Ramaekers A, Magnenat E, Marin EC, Gendre N, Jefferis GS, Luo L, Stocker RF (2005) Glomerular maps without cellular redundancy at successive levels of the Drosophila larval olfactory circuit. Curr Biol 15:982–992CrossRefPubMedGoogle Scholar
  63. Ray A (2015) Reception of odors and repellents in mosquitoes. Curr Opin Neurobiol 34:158–164CrossRefPubMedPubMedCentralGoogle Scholar
  64. Ribeiro C, Dickson BJ (2010) Sex peptide receptor and neuronal TOR/S6 K signaling modulate nutrient balancing in Drosophila. Curr Biol 20:1000–1005Google Scholar
  65. Root CM, Ko KI, Jafari A, Wang JW (2011) Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell 145:133–144CrossRefPubMedPubMedCentralGoogle Scholar
  66. Ruta V, Datta SR, Vasconcelos ML, Freeland J, Looger LL, Axel R (2010) A dimorphic pheromone circuit in Drosophila from sensory input to descending output. Nature 468:686–690CrossRefPubMedGoogle Scholar
  67. Sato K, Pellegrino M, Nakagawa T, Vosshall LB, Touhara K (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452:1002–1006CrossRefPubMedGoogle Scholar
  68. Savarit F, Sureau G, Cobb M, Ferveur JF (1999) Genetic elimination of known pheromones reveals the fundamental chemical bases of mating and isolation in Drosophila. Proc Natl Acad Sci U S A 96:9015–9020CrossRefPubMedPubMedCentralGoogle Scholar
  69. Schneider D, Kaissling K (1957) Der Bau der Antenne des Seidenspinners Bombyx mori. Sensillen, cuticulare Bildungen und innerer Bau. Zool Jhb Anat 76:223–250Google Scholar
  70. Semmelhack JL, Wang JW (2009) Select Drosophila glomeruli mediate innate olfactory attraction and aversion. Nature 459:218–223CrossRefPubMedPubMedCentralGoogle Scholar
  71. Shanbhag S, Singh K, Singh R (1995) Fine structure and primary sensory projections of sensilla located in the sacculus of the antenna of Drosophila melanogaster. Cell Tissue Res 282:237–249CrossRefPubMedGoogle Scholar
  72. Shanbhag S, Muller B, Steinbrecht A (1999) Atlas of olfactory organs of Drosophila melanogaster. 1. Types, external organization, innervation and distribution of olfactory sensilla. Int J Insect Morphol Embryol 28:377–397CrossRefGoogle Scholar
  73. Siju KP, Bracker LB, Kadow ICG (2014) Neural mechanisms of context- dependent processing of CO2 avoidance behavior in fruit flies. Fly 8:68–74CrossRefPubMedPubMedCentralGoogle Scholar
  74. Stensmyr MC, Dweck HK, Farhan A, Ibba I, Strutz A, Mukunda L, Linz J, Grabe V, Steck K, Lavista-Llanos S, Wicher D (2012) A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell 151:1345–1357CrossRefPubMedGoogle Scholar
  75. Strutz A, Soelter J, Baschwitz A, Farhan A, Grabe V, Rybak J, Knaden M, Schmuker M, Hansson BS, Sachse S (2014) Decoding odor quality and intensity in the Drosophila brain. Elife 3:e04147CrossRefPubMedPubMedCentralGoogle Scholar
  76. Su CY, Martelli C, Emonet T, Carlson JR (2011) Temporal coding of odor mixtures in an olfactory receptor neuron. Proc Natl Acad Sci U S A 108:5075–5080CrossRefPubMedPubMedCentralGoogle Scholar
  77. Suh GSB et al. (2004) A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature 431:854–859CrossRefPubMedGoogle Scholar
  78. Suh GS, Ben-Tabou de Leon S, Tanimoto H, Fiala A, Benzer S, Anderson DJ (2007) Light activation of an innate olfactory avoidance response in Drosophila. Curr Biol 17:905–908CrossRefPubMedGoogle Scholar
  79. Swale DR, Sun B, Tong F, Bloomquist JR (2014) Neurotoxicity and Mode of Action of N,N-Diethyl-Meta- Toluamide (DEET). PloS One 9:e103713Google Scholar
  80. Syed Z, Leal WS (2008) Mosquitoes smell and avoid the insect repellent DEET. Proc Natl Acad Sci U S A 105:13598–13603CrossRefPubMedPubMedCentralGoogle Scholar
  81. Takken W, van Loon JJ, Adam W (2001) Inhibition of host-seeking response and olfactory responsiveness in Anopheles gambiae following blood feeding. J Insect Physiol 47:303–310CrossRefPubMedGoogle Scholar
  82. Tauxe GM, MacWilliam D, Boyle SM, Guda T, Ray A (2013) Targeting a dual detector of skin and CO2 to modify mosquito host seeking. Cell 155:1365–1379CrossRefPubMedPubMedCentralGoogle Scholar
  83. Toshima N, Tanimura T (2012) Taste preference for amino acids is dependent on internal nutritional state in Drosophila melanogaster. J Exp Biol 215:2827–2832CrossRefPubMedGoogle Scholar
  84. Turner SL, Ray A (2009) Modification of CO2 avoidance behaviour in Drosophila by inhibitory odorants. Nature 461:277–281CrossRefPubMedGoogle Scholar
  85. Turner SL, Li N, Guda T, Githure J, Carde RT, Ray A (2011) Ultra-prolonged activation of CO2-sensing neurons disorients mosquitoes. Nature 474:87–91CrossRefPubMedPubMedCentralGoogle Scholar
  86. van Naters WVG, Carlson JR (2007) Receptors and neurons for fly odors in Drosophila. Curr Biol 17:606–612CrossRefGoogle Scholar
  87. Vargas MA, Luo N, Yamaguchi A, Kapahi P (2010) A role for S6 kinase and serotonin in postmating dietary switch and balance of nutrients in D. melanogaster. Curr Biol 20:1006–1011CrossRefPubMedPubMedCentralGoogle Scholar
  88. Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R (1999) A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96:725–736CrossRefPubMedGoogle Scholar
  89. Vosshall L, Wong A, Axel R (2000) An olfactory sensory map in the fly brain. Cell 102:147–159CrossRefPubMedGoogle Scholar
  90. Wang JW, Wong AM, Flores J, Vosshall LB, Axel R (2003) Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112:271–282CrossRefPubMedGoogle Scholar
  91. Wasserman S, Salomon A, Frye MA (2013) Drosophila tracks carbon dioxide in flight. Curr Biol 23:301–306CrossRefPubMedGoogle Scholar
  92. Wilson RI, Mainen ZF (2006) Early events in olfactory processing. Ann rev. Neuroscience 29:163–201Google Scholar
  93. Wilson RI, Turner GC, Laurent G (2004) Transformation of olfactory representations in the Drosophila antennal lobe. Science 303:366–370CrossRefPubMedGoogle Scholar
  94. Xia Y, Wang G, Buscariollo D, Pitts RJ, Wenger H, Zwiebel LJ (2008) The molecular and cellular basis of olfactory-driven behavior in Anopheles gambiae larvae. Proc Natl Acad Sci U S A 105:6433–6438CrossRefPubMedPubMedCentralGoogle Scholar
  95. Xu P, Choo YM, De La Rosa A, Leal WS (2014) Mosquito odorant receptor for DEET and methyl jasmonate. Proc Natl Acad Sci U S A 111:16592–16597CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Interdepartmental Neuroscience ProgramUniversity of CaliforniaRiversideUSA
  2. 2.Entomology DepartmentUniversity of CaliforniaRiversideUSA
  3. 3.Center for Disease Vector ResearchUniversity of CaliforniaRiversideUSA

Personalised recommendations