Journal of Chemical Ecology

, Volume 42, Issue 7, pp 571–583 | Cite as

Semiochemical Strategies for Tortricid Moth Control in Apple Orchards and Vineyards in Italy

  • Claudio IoriattiEmail author
  • Andrea Lucchi


- This review summarizes work done in Italy in taking semiochemical-based management of orchard and vineyard pests from the research and development stage to successful commercial deployment. Mating disruption (MD) of codling moth Cydia pomonella (CM) was originally introduced into the Trentino-South Tyrol areas to address the development of CM resistance to insecticides, particularly insect growth regulators (IGRs), and to mitigate the conflict at the rural/urban interface related to the extensive use of insecticides. Although the mountainous terrain of the area was not optimal for the efficacy of MD, commitment and determination led to the rapid adoption of MD technology throughout the region. Grower cooperatives and their field consultants were strongly influential in convincing growers to accept MD technology. Public research institutions conducted extensive research and education, and provided credible assessments of various MD technologies. By 2016, the deployment of MD in effective area-wide strategies in apple (22,100 ha) and grapes (10,450 ha), has resulted in better control of tortricid moth pests and a substantial decrease in insecticide use. Collaboration between the research community and the pheromone industry has resulted in the development of increasingly effective single-species dispensers, as well as multi-species dispensers for the control of both target and secondary pests. Over the last 20 years, hand-applied reservoir dispensers have shown excellent efficacy in both apple and grapes. Recently, aerosol dispensing systems have been shown to be effective in apple orchards. Further research is needed on the efficacy of aerosols in vineyards before the technology can be widely adopted. The successful implementation of MD in apple and grape production in Trentino-South Tyrol is expediting adoption of the technology in other Italian fruit production regions.


Cydia pomonella Lobesia botrana Mating disruption Area-wide pest management Trentino – South Tyrol Grapes Apples 



Our sincere thanks to all those people who have contributed to the implementation of mating disruption in Trentino-South Tyrol, whose names occur frequently in the references of this paper.


  1. Anfora G, Tasin M, De Cristofaro A, Ioriatti C, Lucchi A (2009) Synthetic grape volatiles attract mated Lobesia botrana females in laboratory and field bioassays. J Chem Ecol 35:1054–1062Google Scholar
  2. Angeli G, Molinari F, Marchesini E, Rovetto I, Tosi L, Schreiber G (2003) Control of Cydia pomonella of apple with the disorientation technique. Inf Agrar 59:57–60Google Scholar
  3. Angeli G, Anfora G, Baldessari M, Germinara GS, Rama F, De Cristofaro A, Ioriatti C (2007) Mating disruption of codling moth, Cydia pomonella (L.) (Lepidoptera Tortricidae) with high density of Ecodian sex pheromone dispensers. J Appl Entomol 131:311–318CrossRefGoogle Scholar
  4. Angeli G, Rizzi C, Baldessari M, Dalpiaz M (2013) Difesa dalla carpocapsa del melo con Checkmate® Puffer CM. Inf Agrar 69:51–54Google Scholar
  5. Arsura E, Capizzi A, Orlandini L, Rama F (1992) Mating disruption in the experience of Isagro – Enichem Agricoltura. IOBC/WPRS Bulletin 15:6–9Google Scholar
  6. Audemard H (1980) Methodologie mise en oevre dans l’étude quantitative des populations de carpocapse (Laspeyresia pomonella L.) en verger de pommiers. Rev Zool Agric Pathol Veg 79:29–54Google Scholar
  7. Audemard H, Beauvais F, Descoins C (1977) La lutte contre le carpocapse (L. pomonella) avec une pheromone sexuelle de synthese par la methodes de confusion des mâles. Premier essais en verger commercial de pommiers. Re Zool Agric Pathol Veg 76:15–24Google Scholar
  8. Bagnoli B, Goggioli D, Righini M (1993) Prove di lotta con il metodo della confusione sessuale contro Lobesia botrana (Den. e Schiff.) nella zona del Chianti. Redia 74:375–390Google Scholar
  9. Bagnoli B, Espadas AL, Serrano Palao J, Garcia Perez BM, Puche Cascales A, Pastor Juan M, Ortega M, Sambado P, Lucchi A (2011) Performance of wine traps in monitoring adults of Lobesia botrana in mating disrupted vineyards in Spain. IOBC/WPRS Bulletin 85:145–150Google Scholar
  10. Baiamonte I, Raffo A, Nardo N, Moneta E, Peparaio M, D’Aloise A, Kelderer M, Caserac C, Paolettia F (2015) Effect of the use of anti-hail nets on codling moth (Cydia pomonella) and organoleptic quality of apple (cv. Braeburn) Grown in alto Adige region (northern Italy). J Sci Food Agric 96:2025–2032Google Scholar
  11. Baldessari M, Trona F, Angeli G, Ioriatti C (2010) Effectiveness of five insecticides for the control of adults and young stages of Cacopsylla melanoneura (Förster) (Hemiptera: Psyllidae) in a semifield trial. Pest Manag Sci 66:308–312CrossRefPubMedGoogle Scholar
  12. Baldessari M, Giuliani G, Chiesa S, Larcher R, Ioriatti C, Angeli G (2013a) Pesticide residue free fruits: The aim of Trentino apple production system. Comm Agric Appl Biosci 78:133–137Google Scholar
  13. Baldessari M, Ioriatti C, Angeli G (2013b) Evaluation of Puffer® CM, a release device of pheromone to control codling moth on apple in Italy. IOBC/WPRS Bulletin 91:199–204Google Scholar
  14. Barnes MM (1991) Codling moth occurrence, host race formation, and damage. In: Van der Geest LPS, Evenhuis HH (eds) Tortricid pests: Their biology, natural enemies and control, Elsevier Press, Amsterdam, pp 313–328Google Scholar
  15. Boscheri S, Rizzolli W, Paoli N (1992) Experience with mating disruption for control of the codling moth and leafrollers at the Laimburg experimental station (South Tyrol – Bolzano). IOBC/WPRS Bulletin 15:81–87Google Scholar
  16. Butturini A, Tiso R, De Bernardis E (1992) Influenza della temperatira sulo sviluppo di Cydia pomonella L. (Lepidoptera: Tortricidae). Boll Inst Ent “G. Grandi” Univ Bologna 47:123–134Google Scholar
  17. CAB (1974) Distribution maps of pests, map 70. CAB International, Wallingford, UKGoogle Scholar
  18. Carlos C, Costa J, Gaspar C, Domingos J, Alves F, Torres L (2005) Mating disruption to control the grapevine moth Lobesia botrana (Den. & Schiff.) in Porto wine region vineyards: A three-year study. IOBC/WPRS Bulletin 28:283–287Google Scholar
  19. Caruso S, Casera C, Kelderer M, Vergnani S (2012) Limitation of codling moth (Cydia pomonella) with different paraffin and plant oils. In: Gauder M, Zikeli S, Kienzle J (eds) Proc 15th Int Conf Organic Fruit-Growing, FOEKO, Weinsberg, pp 98–105 Accessed 15 April 2016
  20. Caruso S, Franceschelli F, Iodice A, Ardizzoni M (2014) Comparison of two methods to measure the mean release rate of Shin-Etsu products: Gas chromatography and residual weighing. IOBC/WPRS Bulletin 99:39–44Google Scholar
  21. Casado D, Cave F, Welter S (2014) Puffer-CM dispensers for mating disruption of codling moth: Area of influence and impacts on trap finding success by males. IOBC/WPRS Bulletin 99:25–31Google Scholar
  22. Cesari M, Maistrello L, Ganzerli F, Dioli P, Rebecchi L, Guidetti R (2015) A pest alien invasion in progress: Potential pathways of origin of the brown marmorated stink bug Halyomorpha halys populations in Italy. J Pest Sci 88:1–7Google Scholar
  23. Charmillot PJ (1980) La lutte contre le Carpocapse (Laspeyresia pomonella L.) par la technique de confusion. Revue Suisse Vitic Arboric Hortic 12:159–170Google Scholar
  24. Charmillot PJ (1992) Mating disruption technique to control grape and wine moths: General considerations. IOBC/WPRS Bulletin 15:113–116Google Scholar
  25. Charmillot PJ, Baggiolini M (1975) Essai de lutte contre le Carpocapse (Laspeyresia pomonella L.) par capture intensive des mâles à l’aide d’attractifs sexuelles synthetiques. Rech Agron Suisse 14:71–77Google Scholar
  26. Charmillot PJ, Bloesch B (1987) La technique de confusion sexuelle: Un moyen specifique de lutte contre le Carpocapse Cydia pomonella L. Revue Suisse Vitic Arboric Hortic 19:129–138Google Scholar
  27. Charmillot PJ, Pasquier D (2000) Lutte par confusion contre les vers de la grappe: Succès et problèmes rencontrés. IOBC/WPRS Bulletin 23:145–147Google Scholar
  28. Charmillot PJ, Baggiolini M, Murbach R, Arn H (1975) Comparaison de différents piège a attractif synthetique pour le contrôle du vol du Carpocapse (Laspeyresia pomonella L.). Rech Agron Suisse 14:57–79Google Scholar
  29. Charmillot PJ, Degen T, Pasquier D, Briand F (2005) Noveaux procédés à base de pheromones pour lutter contre les vers de la grappe, essay preliminaries en 2004. Revue Suisse Vitic Arboric Hortic 37:283–288Google Scholar
  30. Christanell J (2013) La mosca mediterranea dei fruttiferi. Un nuovo parassita facoltativo in Alto Adige. Frutta e Vite 3:96–98Google Scholar
  31. Cini A, Ioriatti C, Anfora G (2012) A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for Integrated Pest Management. Bull Insectology 65:149–160Google Scholar
  32. Clementi M, Causin R, Marzocchi C, Mantovani A, Tenconi R (2007) A study of the impact of agricultural pesticide use on the prevalence of birth defects in northeast Italy. Reprod Tox 24:1–8CrossRefGoogle Scholar
  33. Cooper ML, Varela LG, Smith RJ, Whitmer DR, Simmons GA, Lucchi A, Broadway R, Steinhauer R (2014) Growers, scientists and regulators collaborate on European grapevine moth program. Calif Agric 4:125–133CrossRefGoogle Scholar
  34. Curto G, Caruso S, Reggiani A, Vergnani S (2010) Difesa del melo dalla carpocapsa con i nematodi. Inf Agrar 66:48–50Google Scholar
  35. Dalpiaz A (2014) Innovazione e organizzazione, le uniche risposte per uscire dalla crisi. Frutticoltura 11:2–6Google Scholar
  36. Damos P, Colomar LAE, Ioriatti C (2015) Integrated fruit production and pest management in Europe: The apple case study and how far we are from the original concept? Insects 6:626–657CrossRefPubMedPubMedCentralGoogle Scholar
  37. Domenichini P, Castagna B, Abbiati C, Pedron S, Pezzini G (1990) First conclusions after 5 years of experiences carried out with mating disruption technique applied against oriental fruit moth (Cydia molesta Busck) on peach tree using polyethylene tube dispensers. In: Atti Giornate Fitopatologiche 1:237–246. Accessed 15 April 2016
  38. Drogué S, DeMaria F (2012) Pesticide residues and trade, the apple of discord? Food Policy 37:641–649CrossRefGoogle Scholar
  39. Forti D, Angeli G, Ioriatti C (2003) Codling moth: State of the art on the traditional and innovative control strategies. Inf Fitopatol 53:13–16Google Scholar
  40. Gonzales M (2010) Lobesia botrana: Polilla de la uva. Rev Enol 2:2–5Google Scholar
  41. Ioriatti C, Arn H (1992) Use of pheromones and other semiochemicals in integrated control. IOBC/WPRS Bulletin 15:1145Google Scholar
  42. Ioriatti C, Dalla Serra A (1992) Five-year experience with mating disruption as a control method against codling moth and leafroller species in apple orchards of Trentino. IOBC/WPRS Bulletin 15:88–93Google Scholar
  43. Ioriatti C (2015) New and old pests of the European vineyards: A potential threat for the viticulture worldwide. In: Proc XV Congresso Latino-Americano de Viticultura e Enologia (in press)Google Scholar
  44. Ioriatti C, Vita G (1990) Resultats preliminaires d’un essai de lutte par confusion sexuelle contre le vers de la grappe (L. botrana Schiff.) dans un vignoble du Trentine IOBC/WPRS Bulletin 13:80–84Google Scholar
  45. Ioriatti C, Lucchi A, Bagnoli B (2008) Grape areawide pest management in Italy. In: Koul O, Cuperus GW, Elliott N (eds) Areawide pest management: theory and implementation. CAB International, UK, pp 208–225Google Scholar
  46. Ioriatti C, Forti D, Rizzi C, Pontalti M, Dallago G (1997) La confusione sessuale su melo per il controllo di carpocapsa e ricamatori. Inf Agrar 30:69–74Google Scholar
  47. Ioriatti C, Bagnoli B, Lucchi A, Veronelli V (2004) Vine moths control by mating disruption in Italy: Results and future prospects. Redia 87:117–128Google Scholar
  48. Ioriatti C, Pasqualini E, Pasquier D, Tomasi C (2006) Efficacy baselines of 7 insecticides against larvae of Pandemis heparana (Lepidoptera: Tortricidae). J Pest Sci 79:163–168Google Scholar
  49. Ioriatti C, Tasin M, Charmillot PJ, Reyes M, Sauphanor B (2007) Early detection of resistance to tebufenozide in field populations of Cydia pomonella L.: Methods and mechanisms. J Appl Entomol 131: 453–459Google Scholar
  50. Ioriatti C, Anfora G, Angeli G, Civolani S, Schmidt S, Pasqualini E (2009a) Toxicity of emamectin benzoate to codling moth and oriental fruit moth (Lepidoptera: Tortricidae): Laboratory and field tests. Pest Manag Sci 65:306–312Google Scholar
  51. Ioriatti C, Anfora G, Angeli G, Mazzoni V, Trona F (2009b) Effects of chlorantraniliprole on eggs and larvae of Lobesia botrana (Denis & Schiffermüller) (Lepidoptera: Tortricidae). Pest Manag Sci 65:717–722Google Scholar
  52. Ioriatti C, Anfora G, Tasin M, De Cristofaro A, Witzgall P, Lucchi A (2011a) Chemical ecology and management of Lobesia botrana (Lepidoptera; Tortricidae). J Econ Entomol 104:1125–1137Google Scholar
  53. Ioriatti C, Agnello AM, Martini F, Kovach J (2011b) Evaluation of the environmental impact of apple pest control strategies using pesticide risk indicators. Integr Environ Assess Manag 7:542–549 Google Scholar
  54. Ioriatti C, Lucchi A, Varela LG (2012) Grape berry moths in western European vineyards and their recent movement into the new world. In: Bostanian NJ, Vincent C, Isaacs R (eds) Arthropod management in vineyards: Pests, approaches, and future directions, Springer, Dordrecht, pp 339–359Google Scholar
  55. Judd GJR, Gardiner MGT (2005) Towards eradication of codling moth in British Columbia by complimentary actions of mating disruption, tree banding and sterile insect technique: Five-year study in organic orchards. Crop Prot 24:718–733Google Scholar
  56. Lance D, Mastro VB, Cardé RT, Ioriatti C, Lucchi A, Steinhauer R, Simmons G, Cooper M, Varela LG (2015) Report of USDA APHIS international technical working group for the European grapevine moth (EGVM) in California. November 2, 2015 Accessed 18 April 2016
  57. Light DM, Knight AL, Henrick CA, Rajapaska D, Lingren B, Dickens JC, Reynolds KM, Buttery RG, Merril G., Roitman J, Campbell BC (2001) Ethyl (2E,4Z)-2,4-decadienoate: a pear-derived kairomone with pheromonal potency that attracts male and female codling moth, Cydia pomonella (L.). Naturwissenschaften 88:333–338Google Scholar
  58. Lorenzin M (2011) Dietary intake of pesticide residues in Italy: Results of 2005 - 2008 study. La Riv Sci dell’Alimentazione 40:19–31Google Scholar
  59. Lucas Espadas A, Hermosilla Ceron A, Lucchi A (2016) Biological control of the vine mealybug Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae) on the table grape vineyards in Murcia (Spain). Abstract Book XIV Int Symp Scale Insect Studies, 13–16 June 2012, Catania (Italy), p. 85Google Scholar
  60. Lucchi A, Sambado P, Royo ABJ, Martínez AM, Bagnoli B (2015) Proyecto de investigación sobre el control de Lobesia botrana mediante confusión sexual en la DOP de Cariñena: Implementación, gestión y resultados del control. Phytoma 274:26–30Google Scholar
  61. Lucchi A, Ladurner E, Savino F, Gandini L, Mattedi L, Varner M, Iodice A (2016) Isonet®, a new mating disruption product for the control of Planococcus ficus (Signoret) (Hemiptera : Pseudococcidae). Abstract Book XIV Int Symp Scale Insect Studies, 13–16 June 2012, Catania (Italy), p. 78.Google Scholar
  62. Maini S, Bortolotti A, Pasqualini E (1982) Attempts to control Laspeyresia pomonella by mating disruption. IOBC/WPRS Bulletin, Meeting on application of the mating disruption technique in fruit orchards and vineyards, Changins, Sept. 28/29, 1982.Google Scholar
  63. Mani E, Schwaller F (1992) Results of 12 year experiences to control codling moth, Cydia pomonella L. by mating disruption. IOBC Bulletin 15:76–80Google Scholar
  64. Marti S, Zaragoza A, Larsen T (2007) Mating disruption of codling moth, Cydia pomonella (L.), using Puffer CM, on apple orchards. IOBC/WPRS Bulletin 30:101–105Google Scholar
  65. Mattedi L, Forno F, Varner M, Piva U (2008) Field observations about the behaviour of codling moth in Trentino (North-Eastern Italy). In: Proc 13th Int Conf Organic Fruit-Growing, FOEKO, Weinsberg, pp 238–246 Accessed 15 April 2016
  66. Michelatti G, Schreiber G, Ugolini A, Bosso A, Bussi C (1990) Two years of control trials against Cydia pomonella and Argyrotaenia punchellana with the mating disruption method in Piedmont orchards. In: Atti Giornate Fitopatologiche 1: 171–180. Accessed 15 April 2016
  67. Neumann U (1997) Successful employment of pheromone in apple: Exemplary results from Europe. IOBC/WPRS Bulletin 20:73–78Google Scholar
  68. Neumann U (1992) Avoiding pitfalls in confusion: A review on mating disruption. IOBC/WPRS Bulletin 15:10–17Google Scholar
  69. OIV 2015. World vitiviniculture situation. Accessed 15 April 2016
  70. Pasqualini E (2000) IPM: Theory and practice in the pest control of pome fruit trees. Pflanzenschutz-Nachrichten Bayer 53:154–176Google Scholar
  71. Pasqualini E, Ioriatti C (2009) Cydia pomonella Carpocapsa In: Cydia, Lepidotteri dannosi su pomacee e drupacee. Edizioni L’Informatore Agrario, Italy, pp 15–26Google Scholar
  72. Pasqualini E, Bertolotti A, Maini S, Briolini G, Castellari PL (1983) Spatial distribution and phenology of adult emergence of three species of Lepidoptera Tortricidae leaf-rollers in Emilia-Romagna. Boll Inst Ent “G. Grandi” Univ Bologna 37:109–121Google Scholar
  73. Pasqualini E, Antropoli A, Faccioli G (1994) Performance tests of granulosis virus against Cydia pomonella L. (Lepidoptera, Olethreutinae). IOBC/WPRS Bulletin 17:113–119Google Scholar
  74. Pernter P (2016) Eine Südtiroler Erfolgsgeschichte Verwirrte Fläche steigt auf 14.900 ha. Obstabau Weinbau 5:5–8Google Scholar
  75. Pivato A, Barausse A, Zecchinato F, Palmeri L, Raga R, Lavagnolo MC, Cossu R (2015) An integrated model-based approach to the risk assessment of pesticide drift from vineyards. Atmos Environ 111:136–150Google Scholar
  76. Polajnar J, Eriksson A, Lucchi A, Anfora G, Virant-Doberlet M, Mazzoni V (2015) Manipulating arthropod behaviour with substrate-borne vibrations – potential for insect pest control. Pest Manag Sci 71:15–23Google Scholar
  77. Rama F (1997) Ecopom dispensers for mating disruption in apple orchards. IOBC/WPRS Bulletin 20:65–72Google Scholar
  78. Rama F, Reggiori F, Dal Pane M, Molinari F, Cravedi P, Boselli M (2001) The control of Cydia molesta in pome fruit orchards using sex pheromones through the method of "disorientation". IOBC/WPRS Bulletin 24:117–122Google Scholar
  79. Rama F, Reggiori F, Cravedi P, Molinari F (2002) The control of Cydia molesta in stone- and pome-fruit orchards by false-trail following. IOBC/WPRS Bulletin 25:121–128Google Scholar
  80. Riedl H, Zelger R (1994) Erste Ergebnisse der Untersuchungen zur resistenz des Apfelwickler gegenu¨ ber Diflubenzuron. Obstbau Weinbau 4:107–109Google Scholar
  81. Rigamonti IE (2004) Contributions to the knowledge of Ceratitis capitata Wied. (Diptera, Tephritidae) in Northern Italy: I. Observations on the biology. Boll Zool Agrar Bachic 36:89–100Google Scholar
  82. Rizzi C, Anfora G, Angeli G, Ioriatti C (2008) Per la confusione sessuale decisiva la durata dei dispenser. Inf Agrar 18:56–61Google Scholar
  83. Roehrich R, Carles JP, Darrioumerle Y, Pargade P, Lalanne Cassou B (1976) Essai en vignoble de phéromones de synthèse pour la capture des mâles de l’Eudémis (Lobesia botrana Schiff.). Ann Zool Écol Anim 8:473–480Google Scholar
  84. Roehrich R, Carles JP, Tresor C (1977) Essai préliminaire de protection du vignoble contre Lobesia botrana Schiff. Au moyen de la phéromone sexuelle de synthèse (méthode de la confusion). Rev Zool Agric Pathol Vég 76:25–36Google Scholar
  85. Roelofs WL, Comeau A, Hill A, Milicevic G (1971) Sex attractant of the codling moth: Characterization with electroantennogram technique. Science 174:297–299Google Scholar
  86. Roelofs WL, Kochansky J, Cardé R, Arn H, Rauscher S (1973) Sex attractant of the grapevine moth Lobesia botrana. Mitt Schweis Entomol Ges 46:72–73Google Scholar
  87. Rossi Stacconi MV, Buffington M, Daane KM, Dalton DT, Grassi A, Kaçar G, Miller B, Ouantar M, Loni A, Ioriatti C, Walton VM, Wiman N, Wang X, Anfora G (2015) Host stage preference, efficacy and fecundity of parasitoids attacking Drosophila suzukii in newly invaded areas. Biol Control 84:28–35CrossRefGoogle Scholar
  88. Sacco M, Pellizzari-Scaltriti G (1983) Trial of control of Cydia pomonella by male disruption method. Inf Fitopatol 11:51–56Google Scholar
  89. Schmidt S, Anfora G, De Cristofaro A, Mattedi L, Molinari F, Pasqualini E, Ioriatti C (2006) Ethyl (2E,4Z)-2,4-decadienoate (pear ester): A new instrument for female codling moth monitoring. Inf Fitopatol 5:17–24Google Scholar
  90. Shorey HH, Gerber RG (1996) Use of puffers for disruption of sex pheromone communication of codling moths (Lepidoptera: Tortricidae) in walnut orchards. Environ Entomol 25:1398–1400CrossRefGoogle Scholar
  91. Stelinski LL, Gut LJ, Haas M, McGhee P, Epstein D (2007) Evaluation of aerosol devices for simultaneous disruption of sex pheromone communication in Cydia pomonella and Grapholita molesta (Lepidoptera: Tortricidae). J Pest Sci 80:225–233CrossRefGoogle Scholar
  92. Tasin M, Ioriatti C, Rizzi C, Dalla Montà L (1998) Overloaded pheromone traps in monitoring Cydia pomonella L. (Lepidoptera, Toritricidae) in apple orchards treated with mating disruption. In: Atti Giornate Fitopatologiche, pp 257–262 Accessed 15 April 2016
  93. Tasin M, Anfora G, Angeli G, Baldessari M, De Cristofaro A, Germinara GS, Rama F, Vitagliano S, Ioriatti C (2005) Control of grapevine moth by disorientation. IOBC/WPRS Bulletin 28:403–408Google Scholar
  94. Tasin M, Lucchi A, Ioriatti C, Mraihi M, De Cristofaro A, Boger Z, Anfora G (2011) Oviposition response of the moth Lobesia botrana to sensory cues from a host plant. Chem Senses 36:633–639CrossRefPubMedGoogle Scholar
  95. Thomson DR, Gut LJ, Jenkins JW (1999) Pheromone for insect control. In: Hall FR, Menn JJ (eds) Method in Biotechnology, Vol 5. Biopesticides: Use and delivery. Humana Press Inc., Totowa, NJ, pp 385–412Google Scholar
  96. Trematerra P, Ioriatti C, Schreiber G, Natali A (1993) Mating disruption with semi-permeable membrane dispenser for the control of Cydia pomonella L. IOBC/WPRS Bulletin 16:277–283Google Scholar
  97. Trona F, Anfora G, Baldessari M, Casagrande E, Ioriatti C, Angeli G (2009) Mechanisms and efficacy of mating disruption of codling moth Cydia pomonella (L.) with EcoTape pheromone dispensers. Bull Insectology 62:7–13Google Scholar
  98. Varela LG, Smith RJ, Cooper ML, Hoenisch RW (2010) European grapevine moth, Lobesia botrana, in Napa valley vineyards. Pract. Winery Vineyard (March/April): 1–5Google Scholar
  99. Varner M, Ioriatti C (1992) Mating disruption of Lobesia botrana in Trentino (Italy): organization of the growers and first results. IOBC/WPRS Bull 15:121–124Google Scholar
  100. Varner M, Dallago G, Mattedi L, Forti D (1997) Experience with mating disruption of apple leafrollers in Trentino. La Difesa delle Piante 20:91–95Google Scholar
  101. Varner M, Mattedi L, Lucchi A (2015) Per una gestione sostenibile del problema planococco. Il Corriere Vinicolo 18:15–20Google Scholar
  102. Vita G, Caffarelli V, Pettenello M (1985) Esperienze di lotta integrata in un comprensorio viticolo del Lazio. In: Abstracts, XIV Congresso Nazionale Italiano di Entomologia, pp 891–895Google Scholar
  103. Waldner W (1997a) Experiences with mating disruption of leafroller in South Tyrol. La Difesa delle Piante 20:97–101Google Scholar
  104. Waldner W (1997b) Three years of large-scale control of codling moth by mating disruption in the South Tyrol, Italy. IOBC/WPRS Bulletin 20:35–44Google Scholar
  105. Waldner W (2005) Constant monitoring enhances the success of pheromone in IFP. IOBC/WPRS Bulletin 28:277–281Google Scholar
  106. Waldner W (2009) Le catene alimentari e la riduzione numerica di residui di agro farmaci. Frutta e Vite 4:182–186Google Scholar
  107. Wildbolz Th, Arn H, Mani E (1973) Un essai de piégeage massif di Carpocapse. Comm. 4e Réunion Group de Travaille Carpocapse et Adoxophyes, OILB/SROP, Wädenswill 26–29 Nov 1973.Google Scholar
  108. Witzgall P, Stelinski L, Gut L, Thomson D (2008) Codling moth management and chemical ecology. Annu Rev Entomol 53:503–522CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Center for Technology TransferFEM-IASMASan Michele All’AdigeItaly
  2. 2.Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly

Personalised recommendations