Journal of Chemical Ecology

, Volume 41, Issue 10, pp 904–912 | Cite as

The Effects of Diesel Exhaust Pollution on Floral Volatiles and the Consequences for Honey Bee Olfaction

  • Inka Lusebrink
  • Robbie D. Girling
  • Emily Farthing
  • Tracey A. Newman
  • Chris W. Jackson
  • Guy M. Poppy


There is growing evidence of a substantial decline in pollinators within Europe and North America, most likely caused by multiple factors such as diseases, poor nutrition, habitat loss, insecticides, and environmental pollution. Diesel exhaust could be a contributing factor to this decline, since we found that diesel exhaust rapidly degrades floral volatiles, which honey bees require for flower recognition. In this study, we exposed eight of the most common floral volatiles to diesel exhaust in order to investigate whether it can affect volatile mediated plant-pollinator interaction. Exposure to diesel exhaust altered the blend of common flower volatiles significantly: myrcene was considerably reduced, β-ocimene became undetectable, and β-caryophyllene was transformed into its cis-isomer isocaryophyllene. Proboscis extension response (PER) assays showed that the alterations of the blend reduced the ability of honey bees to recognize it. The chemically reactive nitrogen oxides fraction of diesel exhaust gas was identified as capable of causing degradation of floral volatiles.


Floral scent compounds Diesel exhaust Nitrogen oxides Scent degradation Scent recognition Proboscis extension response 



We acknowledge Wittko Francke for valuable comments on the manuscript, Christine M. Reitmayer for help with beekeeping. We also thank the Erbilgin lab at the University of Alberta for providing us with a trans-verbenol mass spectrum. Funding for this research has been provided through the Leverhulme Trust Research Project Grant RPG-089.

Supplementary material

10886_2015_624_MOESM1_ESM.pdf (567 kb)
ESM 1 (PDF 566 KB)


  1. Abrol DP (2012) Decline in pollinators. Pollination biology: biodiversity conservation and agricultural production. Springer, Netherlands, pp 545–601CrossRefGoogle Scholar
  2. Atkinson R, Arey J (2003) Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmospheric Environment 37(Supplement 2):197–219Google Scholar
  3. Augusto O, Bonini MG, Amanso AM, Linares E, Santos CCX, DE Menezes SL (2002) Nitrogen dioxide and carbonate radical anion: two emerging radicals in biology. Free Radic Biol Med 32:841–859CrossRefPubMedGoogle Scholar
  4. Babushok VI, Linstrom PJ, Zenkevich IG (2011) Retention indices for frequently reported compounds of plant essential oils. J Phys Chem Ref Data 40:043101CrossRefGoogle Scholar
  5. Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and The Netherlands. Science 313:351–354CrossRefPubMedGoogle Scholar
  6. Bitterman ME, Menzel R, Fietz A, Schafer S (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol 97:107–119CrossRefPubMedGoogle Scholar
  7. Blight MM, Métayer ML, Pham-Delègue MH, Pickett JA, Marion-Poll F, Wadhams LJ (1997) Identification of floral volatiles involved in recognition of oilseed rape flowers, Brassica napus by honeybees, Apis mellifera. J Chem Ecol 23:1715–1727CrossRefGoogle Scholar
  8. Bommarco R, Marini L, Vaissière B (2012) Insect pollination enhances seed yield, quality, and market value in oilseed rape. Oecologia 169:1025–1032CrossRefPubMedGoogle Scholar
  9. Calogirou A, Larsen BR, Kotzias D (1999) Gas-phase terpene oxidation products: a review. Atmos Environ 33:1423–1439CrossRefGoogle Scholar
  10. Dobson HEM (1994) Floral volatiles in insect biology. In: Bernays EA (ed) Insect-plant interactions. CRC Press, London, pp. 47–81Google Scholar
  11. Dobson HEM (2006) Relationship between floral fragrance composition and type of pollinator. In: Dudareva N, Pichersky E (eds) Biology of floral scent. CRC Press, Boca Raton, pp. 147–198CrossRefGoogle Scholar
  12. Dötterl S, Vereecken NJ (2010) The chemical ecology and evolution of bee-flower interactions: a review and perspectives. Can J Zool 88:668–697CrossRefGoogle Scholar
  13. Epstein D, Frazier JL, Purcell-Miramontes M, Hackett K, Rose R, Erickson T, Moriarty T, Steeger T (2013) USDA: report on the national stakeholders conference on honey bee health. Accessed 27 August 2015
  14. European Commission (2014) Environment: Commission takes action against UK for persistent air pollution problems.
  15. Fehsenfeld F, Calvert J, Fall R, Goldan P, Guenther AB, Hewitt CN, Lamb B, Liu S, Trainer M, Westberg H, Zimmerman P (1992) Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. Glob Biogeochem Cycles 6:389–430CrossRefGoogle Scholar
  16. Free JB (1993) Insect pollination of crops, 2nd edn. Academic Press, LondonGoogle Scholar
  17. Fuentes J, Wang D, Bowling D, Potosnak M, Monson R, Goliff W, Stockwell W (2007) Biogenic hydrocarbon chemistry within and above a mixed deciduous forest. J Atmos Chem 56:165–185CrossRefGoogle Scholar
  18. Fuentes JD, Roulston TH, Zenker J (2013) Ozone impedes the ability of a herbivore to find its host. Environ Res Lett 8:014048CrossRefGoogle Scholar
  19. Ghazoul J (2005) Buzziness as usual? Questioning the global pollination crisis. Trends Ecol Evol 20:367–373CrossRefPubMedGoogle Scholar
  20. Girling RD, Lusebrink I, Farthing E, Newman TA, Poppy GM (2013) Diesel exhaust rapidly degrades floral odours used by honeybees. Sci Report 3:2779CrossRefGoogle Scholar
  21. Kerr JT, Pindar A, Galpern P, Packer L, Potts SG, Roberts SM, Rasmont P, Schweiger O, Colla SR, Richardson LL, Wagner DL, Gall LF, Sikes DS, Pantoja A (2015) Climate change impacts on bumblebees converge across continents. Science 349:177–180CrossRefPubMedGoogle Scholar
  22. Kjeldsen F, Christensen LP, Edelenbos M (2003) Changes in volatile compounds of carrots (daucus carota L.) during refrigerated and frozen storage. J Agric Food Chem 51:5400–5407CrossRefPubMedGoogle Scholar
  23. Klein A-M, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. P Roy Soc Lond B Bio 274:303–313CrossRefGoogle Scholar
  24. Klun JA, Chapman OL, Mattes KC, Wojtkowski PW, Beroza M, Sonnet PE (1973) Insect sex pheromones: minor amount of opposite geometrical isomer critical to attraction. Science 181:661–663CrossRefPubMedGoogle Scholar
  25. Knudsen J, Eriksson R, Gershenzon J, Ståhl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120CrossRefGoogle Scholar
  26. Kuwabara M (1957) Bildung des bedingten reflexes von pavlovs typus bei der honigbiene, Apis mellifica. Journal of the faculty of science, Hokkaido university, series 6. Zoology 13:458–464Google Scholar
  27. Lee A, Goldstein AH, Keywood MD, Gao S, Varutbangkul V, Bahreini R, Mg NL, Flagan RC, Seinfeld JH (2006) Gas-phase products and secondary aerosol yields from the ozonolysis of ten different terpenes. J Geophys Res Atmos 111:D07302Google Scholar
  28. McFrederick QS, Kathilankal JC, Fuentes JD (2008) Air pollution modifies floral scent trails. Atmos Environ 42:2336–2348CrossRefGoogle Scholar
  29. McFrederick QS, Fuentes JD, Roulston T, Kathilankal JC, Lerdau M (2009) Effects of air pollution on biogenic volatiles and ecological interactions. Oecologia 160:411–420CrossRefPubMedGoogle Scholar
  30. Naka H, Suzuki T, Watarai T, Horie Y, Mochizuki F, Mochizuki A, Tsuchida K, Arita Y, Ando T (2013) Identification of the sex pheromone secreted by synanthedon tenuis (Lepidoptera: sesiidae). Appl Entomol Zool 48:27–33CrossRefGoogle Scholar
  31. Oldroyd BP (2007) What’s killing American honey bees? PLoS Biol 5:e168Google Scholar
  32. Pinto D, Blande J, Nykänen R, Dong W-X, Nerg A-M, Holopainen J (2007a) Ozone degrades common herbivore-induced plant volatiles: does this affect herbivore prey location by predators and parasitoids? J Chem Ecol 33:683–694CrossRefPubMedGoogle Scholar
  33. Pinto D, Nerg A-M, Holopainen J (2007b) The role of ozone-reactive compounds, terpenes, and green leaf volatiles (GLVs), in the orientation of Cotesia plutellae. J Chem Ecol 33:2218–2228CrossRefPubMedGoogle Scholar
  34. Pinto DM, Himanen SJ, Nissinen A, Nerg AM, Holopainen JK (2008) Host location behavior of Cotesia plutellae kurdjumov (hymenoptera: braconidae) in ambient and moderately elevated ozone in field conditions. Environ Pollut 156:227–231CrossRefPubMedGoogle Scholar
  35. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353. doi: 10.1016/j.tree.2010.01.007 CrossRefPubMedGoogle Scholar
  36. Rachlin S (1971) Process for preparing isocaryophyllene. US Patent 3621070, 192.14, R448Google Scholar
  37. Reinhard J, Sinclair M, Srinivasan MV, Claudianos C (2010) Honeybees learn odour mixtures via a selection of key odorants. PLoS One 5:e9110Google Scholar
  38. Reissell A, Aschmann SM, Atkinson R, Arey J (2002) Products of the OH radical- and O3-initiated reactions of myrcene and ocimene. J Geophys Res 107:4138CrossRefGoogle Scholar
  39. Roderick WR (1966) Current ideas on the chemical basis of olfaction. J Chem Educ 43:510CrossRefPubMedGoogle Scholar
  40. Setiabudi A, Makkee M, Moulijn JA (2004) The role of NO2 and O2 in the accelerated combustion of soot in diesel exhaust gases. Appl Catal B Environ 50:185–194CrossRefGoogle Scholar
  41. Silverstein RM, Young JC (1976) Insects generally use multicomponent pheromones. In: Beroza M (ed) Pest management with insect sex attractants, ACS Symposium Series. American Chemical Society, Washington, pp. 1–29CrossRefGoogle Scholar
  42. Steffan-Dewenter I, Potts SG, Packer L (2005) Pollinator diversity and crop pollination services are at risk. Trends Ecol Evol 20:651–652CrossRefPubMedGoogle Scholar
  43. Titov AI (1963) The free radical mechanism of nitration. Tetrahedron 19:557–580CrossRefGoogle Scholar
  44. Vanbergen AJ, The Insect Pollinators Initiative (2013) Threats to an ecosystem service: pressures on pollinators. Front Ecol Environ 11:251–259CrossRefGoogle Scholar
  45. Wright GA, Schiestl FP (2009) The evolution of floral scent: the influence of olfactory learning by insect pollinators on the honest signalling of floral rewards. Funct Ecol 23:841–851CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Inka Lusebrink
    • 1
  • Robbie D. Girling
    • 1
    • 3
  • Emily Farthing
    • 1
  • Tracey A. Newman
    • 2
  • Chris W. Jackson
    • 1
  • Guy M. Poppy
    • 1
  1. 1.Centre for Biological SciencesUniversity of SouthamptonSouthamptonUK
  2. 2.CES, Faculty of Medicine, Institute for Life SciencesUniversity of SouthamptonSouthamptonUK
  3. 3.School of Agriculture, Policy and DevelopmentUniversity of ReadingReadingUK

Personalised recommendations