Journal of Chemical Ecology

, Volume 41, Issue 9, pp 816–821 | Cite as

Differential Sequestration of a Cytotoxic Vismione from the Host Plant Vismia baccifera by Periphoba arcaei and Pyrrhopyge thericles

  • Ciara Raudsepp-Hearne
  • Annette Aiello
  • Ahmed A. Hussein
  • Maria V. Heller
  • Timothy Johns
  • Todd L. Capson


We sought to compare the abilities of the specialist Lepidoptera Pyrrhopyge thericles (Hesperiidae) and the generalist Periphoba arcaei (Saturniidae) to assimilate three highly cytotoxic compounds from their larval host plant, Vismia baccifera (Clusiaceae) and to determine whether either insect discriminated in its assimilation of the compounds that are structurally similar but of variable cytotoxicity. Vismione B (1), deacetylvismione A (2), and deacetylvismione H (3) are cytotoxic compounds isolated from V. baccifera. Compound 1 was found in the 2nd and 3rd instars of P. arcaei, but not in the mature larvae or the pupae. Pyrrhopyge thericles assimilated trace quantities of compound 1 and deacetylvismione A (2), which were both found in the 3rd and 4th instars. In extracts of V. baccifera, compound 2 is present at levels approximately 6-fold greater than compound 1, indicating that the generalist P. arcaei is capable of selectively sequestering cytotoxic compounds from its host plant. Compounds 1 and 2 show comparable cytotoxicities in three different cancer cell lines, suggesting that properties other than cytotoxicity are responsible for the selective sequestration of 1 by P. arcaei. This study represents the first time that sequestration of this class of compounds has been recorded in the Lepidoptera.


Cytotoxic Sequestration Aposematic Clusiaceae Lepidoptera Saturniidae Hesperiidae 



We thank the Organization of American States, and the Office Québec- Amériques pour la Jeunesse for support for C.R.H. and the Fogarty International Center’s International Cooperative Biodiversity Groups program (ICBG TW006634). We also thank two anonymous reviewers for their constructive comments on the original manuscript.


  1. Blount JD, Speed MP, Ruxton GD, Stephens PA (2009) Warning displays may function as honest signals of toxicity. Proc R Soc B 276:871–877PubMedCentralCrossRefPubMedGoogle Scholar
  2. Boros CA, Stermitz FR, Mcfarland N (1991) Processing of iridoid glycoside antirrinoside from Maurandya antirrhiniflora (Scrophulariaceae) by Meris paradoxa (Geometridae) and Lepipolys species (Noctuidae). J Chem Ecol 17:1123–1133CrossRefPubMedGoogle Scholar
  3. Bowers MD (1993) Aposematic caterpillars: life-styles of the unpalatable and warningly colored. In: Stamp N, Casey T (eds) Ecological and evolutionary constraints on caterpillars and the implications for pest management. Chapman & Hall, New York, pp 331–371Google Scholar
  4. Burns JM, Janzen DH (2001) Biodiversity of pyrrhopygine skipper butterflies (Hesperiidae) in the Area de Conservación Guanacaste, Costa Rica. J Lepid Soc 55:15–43Google Scholar
  5. Cassinelli G, Geroni C, Botta B, Delle Monache G, Delle Monache F (1986) Cytotoxic and antitumor activity of vismiones isolated from Vismieae. J Nat Prod 49:929–931CrossRefPubMedGoogle Scholar
  6. D’Arcy WG (1987) Flora of Panama, checklist and index, part I: the introduction checklist. Missouri Botanical Garden, Saint LouisGoogle Scholar
  7. Delle Monache F, Ferrari F, Battista G, Bettolo M, Maxfield P, Cerrini S, Fedeli W, Gavuzzo E, Vaciago A (1979) Vismiones from Vismia baccifera Var. dealdata (H.B.K.): chemistry and x-ray structure determination. Gazz Chim Ital 109:301–310Google Scholar
  8. Delle Monache F, Ferrari F, Marini Bettolo GB, Cuca Suarez LE (1980) Chemistry of the genus Vismia. Planta Med 40:340–346CrossRefGoogle Scholar
  9. Helson JE, Capson TL, Johns T, Aiello A, Windsor DM (2009) Ecological and evolutionary bioprospecting: using aposematic insects as guides to rainforest plants active against disease. Front Ecol Environ 7:130–134CrossRefGoogle Scholar
  10. Hussein A, Bozzi B, Correa M, Capson TL, Kursar TA, Coley PD, Solis PN, Gupta MP (2003) Bioactive constituents from three Vismia species. J Nat Prod 66:858–860CrossRefPubMedGoogle Scholar
  11. Janzen DH (1982) Guía para la identificación de mariposas nocturnas de la familia Saturniidae del Parque Nacional Santa Rosa, Guanacaste, Costa Rica. Brenesia 19:255–299Google Scholar
  12. Janzen DH, Hallwach W (2003) Caterpillars, pupae, butterflies & moths of the ACG.
  13. Lampert EC, Bowers MD (2010) Host plant influences on iridoid glycoside sequestration of generalist and specialist caterpillars. J Chem Ecol 36:1101–1104CrossRefPubMedGoogle Scholar
  14. Mbwambo ZH, Apers S, Moshi MJ, Kapingu MC, Miert SV, Claeys M, Brun R, Cos P, Pieters L, Vlietinck A (2004) Anthranoid compounds with antiprotozoal activity from Vismia orientalis. Planta Med 70:706–710CrossRefPubMedGoogle Scholar
  15. Naberhaus I, Zintgraf V, Dobler S (2005) Pyrrolizidine alkaloids on three trophic levels - evidence for toxic and deterrent effects on phytophages and predators. Chemoecology 15:121–125CrossRefGoogle Scholar
  16. Nishida R (2002) Sequestration of defensive substances from plants by Lepidoptera. Annu Rev Entomol 47:57–92CrossRefPubMedGoogle Scholar
  17. Opitz SEW, Müller C (2009) Plant chemistry and insect sequestration. Chemoecology 19:117–154CrossRefGoogle Scholar
  18. Prudic LK, Oliver JC, Sperling FAH (2007) The signal environment is more important than diet or chemical specialization in the evolution of warning coloration. Proc Natl Acad Sci U S A 104:19381–19386PubMedCentralCrossRefPubMedGoogle Scholar
  19. Rausher MD (2001) Co-evolution and plant resistance to natural enemies. Nature 411:857–864CrossRefPubMedGoogle Scholar
  20. Reudler H, Biere A, Harvey JA, Nouhuys SV (2011) Differential performance of a specialist and two generalist herbivores and their parasitoids on Plantago lanceolata. J Chem Ecol 37:765–778PubMedCentralCrossRefPubMedGoogle Scholar
  21. Ruxton GD, Speed MP, Broom M (2007) The importance of initial protection of conspicuous mutants for the coevolution of defense and aposematic signaling of the defense: a modeling study. Evolution 61:2165–2174CrossRefPubMedGoogle Scholar
  22. Seo EK, Wani MC, Wall ME, Navarro H, Mukherjee R, Farnsworth NR, Kinghorn AD (2000) New bioactive aromatic compounds from Vismia guianensis. Phytochemistry 55:35–42CrossRefPubMedGoogle Scholar
  23. Simmonds MSJ, Blaney WM, Delle Monache F, Marquina Mac-Quhae M, Marini-Bettolo GB (1985) Insect antifeedant properties of anthranoids from the genus Vismia. J Chem Ecol 11:1595–1599CrossRefGoogle Scholar
  24. Singer MS, Carriere Y, Theuring C, Hartmann T (2004) Disentangling food quality from resistance against parasitoids: diet choice by a generalist caterpillar. Am Nat 164:423–429CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ciara Raudsepp-Hearne
    • 1
    • 2
    • 3
  • Annette Aiello
    • 1
  • Ahmed A. Hussein
    • 4
    • 5
  • Maria V. Heller
    • 1
    • 6
  • Timothy Johns
    • 2
  • Todd L. Capson
    • 1
    • 2
    • 7
  1. 1.Smithsonian Tropical Research InstituteBalboaRepublic of Panama
  2. 2.Department of Plant ScienceMcGill UniversitySte. Anne de BellevueCanada
  3. 3.Department of GeographyMcGill UniversityMontrealCanada
  4. 4.Centro de Investigaciones Farmacognósticas de la Flora Panameña (CIFLORPAN), Facultad de FarmaciaUniversidad de PanamáPanamáRepublica of de Panamá
  5. 5.University of the Western CapeBellvilleRepublic of South Africa
  6. 6.National Bureau of Science, Technology and InnovationPanamaRepublic of Panama
  7. 7.WashingtonUSA

Personalised recommendations