Advertisement

Journal of Chemical Ecology

, Volume 41, Issue 5, pp 431–440 | Cite as

Cerambycid Beetle Species with Similar Pheromones are Segregated by Phenology and Minor Pheromone Components

  • Robert F. Mitchell
  • Peter F. Reagel
  • Joseph C. H. Wong
  • Linnea R. Meier
  • Weliton Dias Silva
  • Judith Mongold-Diers
  • Jocelyn G. Millar
  • Lawrence M. Hanks
Article

Abstract

Recent research has shown that volatile sex and aggregation-sex pheromones of many species of cerambycid beetles are highly conserved, with sympatric and synchronic species that are closely related (i.e., congeners), and even more distantly related (different subfamilies), using the same or similar pheromones. Here, we investigated mechanisms by which cross attraction is averted among seven cerambycid species that are native to eastern North America and active as adults in spring: Anelaphus pumilus (Newman), Cyrtophorus verrucosus (Olivier), Euderces pini (Olivier), Neoclytus caprea (Say), and the congeners Phymatodes aereus (Newman), P. amoenus (Say), and P. varius (F.). Males of these species produce (R)-3-hydroxyhexan-2-one as their dominant or sole pheromone component. Our field bioassays support the hypothesis that cross attraction between species is averted or at least minimized by differences among species in seasonal phenology and circadian flight periods of adults, and/or by minor pheromone components that act as synergists for conspecifics and antagonists for heterospecifics.

Keywords

Reproductive isolation Sex pheromone Aggregation pheromone Cerambycidae Longhorned beetle Anelaphus pumilus Cyrtophorus verrucosus Euderces pini Neoclytus caprea Phymatodes aereus Phymatodes amoenus Phymatodes varius 

Notes

Acknowledgments

We thank Steve Buck and the University of Illinois Committee on Natural Areas, the Champaign County Forest Preserves District, Vermilion County Conservation District, and the Illinois Department of Natural Resources for access to field sites, and Christina Silliman for help in field bioassays. We appreciate funding support from The Alphawood Foundation of Chicago to LMH, the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service (2009-35302-05047) and USDA National Institute of Food and Agriculture (2012-67013-19303) to JGM and LMH, a NIH postdoctoral training grant (5K12 GM000708-15) to RFM, and CAPES Foundation-Brazil (proc. BEX 7234/12-0) to WDS. We also thank Professor Kenji Mori for arranging a gift of (R)-2-methylbutanoic acid, the precursor to synthetic (R)-2-methylbutan-1-ol, for this project.

Supplementary material

10886_2015_571_MOESM1_ESM.docx (159 kb)
Online Resource 1 (DOCX 158 kb)

References

  1. Allison JD, McKenney JL, Millar JG, McElfresh JS, Mitchell RF, Hanks LM (2012) Response of the woodborers Monochamus carolinensis and Monochamus titillator (Coleoptera: Cerambycidae) to known cerambycid pheromones in the presence and absence of the host plant volatile α-pinene. Environ Entomol 41:1587–1596CrossRefPubMedCentralPubMedGoogle Scholar
  2. Baker TC (2008) Balanced olfactory antagonism as a concept for understanding evolutionary shifts in moth sex pheromone blends. J Chem Ecol 34:971–981CrossRefPubMedGoogle Scholar
  3. Barbour JD, Millar JG, Rodstein J, Ray AM, Alston DG, Rejzek M, Dutcher JD, Hanks LM (2011) Synthetic 3,5-dimethyldodecanoic acid serves as a general attractant for multiple species of Prionus (Coleoptera: Cerambycidae). Ann Entomol Soc Am 104:588–593CrossRefGoogle Scholar
  4. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300Google Scholar
  5. Cardé RT, Minks AK (1995) Control of moth pests by mating disruption: successes and constraints. Annu Rev Entomol 40:559–585CrossRefGoogle Scholar
  6. Dodds KJ (2014) Effects of trap height on captures of arboreal insects in pine stands of northeastern United States of America. Can Entomol 146:80–89CrossRefGoogle Scholar
  7. Fierke MK, Skabeikis DD, Millar JG, Teale SA, McElfresh JS, Hanks LM (2012) Identification of a male-produced aggregation pheromone for Monochamus scutellatus scutellatus and an attractant for the congener Monochamus notatus (Coleoptera: Cerambycidae). J Econ Entomol 105:2029–2034CrossRefPubMedGoogle Scholar
  8. Fonseca MG, Vidal DM, Zarbin PHG (2010) Male-produced sex pheromone of the cerambycid beetle Hedypathes betulinus: chemical identification and biological activity. J Chem Ecol 36:1132–1139CrossRefPubMedGoogle Scholar
  9. Francke W, Dettner K (2005) Chemical signaling in beetles. In: Schulz S (ed) The chemistry of pheromones and other semiochemicals II. Springer-Verlag Berlin Heidelberg, Germany, pp 85–166Google Scholar
  10. Ginzel MD (2010) Hydrocarbons as contact pheromones of longhorned beetles (Coleoptera: Cerambycidae). In: Blomquist GL, Bagnères AG (eds) Insect hydrocarbons - biology, biochemistry, and chemical ecology. Cambridge, Cambridge University PressGoogle Scholar
  11. Graham EE, Mitchell RF, Reagel PF, Barbour JD, Millar JG, Hanks LM (2010) Treating panel traps with a fluoropolymer enhances their efficiency in capturing cerambycid beetles. J Econ Entomol 103:641–647CrossRefPubMedGoogle Scholar
  12. Graham EE, Poland TM, McCullough DG, Millar JG (2012) A comparison of trap type and height for capturing cerambycid beetles (Coleoptera). J Econ Entomol 105:837–846CrossRefPubMedGoogle Scholar
  13. Haack RA (2006) Exotic bark- and wood-boring Coleoptera in the United States: Recent establishments and interceptions. Can J For Res 36:269–288CrossRefGoogle Scholar
  14. Haack RA, Hérard F, Sun J, Turgeon JJ (2010) Managing invasive populations of Asian longhorned beetle and citrus longhorned beetle: a worldwide perspective. Annu Rev Entomol 55:521–546CrossRefPubMedGoogle Scholar
  15. Hanks LM, Millar JG (2013) Field bioassays of cerambycid pheromones reveal widespread parsimony of pheromone structures, enhancement by host plant volatiles, and antagonism by components from heterospecifics. Chemoecology 23:21–44CrossRefGoogle Scholar
  16. Hanks LM, Millar JG, Moreira JA, Barbour JD, Lacey ES, McElfresh JS, Reuter FR, Ray AM (2007) Using generic pheromone lures to expedite identification of aggregation pheromones for the cerambycid beetles Xylotrechus nauticus, Phymatodes lecontei, and Neoclytus modestus modestus. J Chem Ecol 33:889–907CrossRefPubMedGoogle Scholar
  17. Hanks LM, Reagel PF, Mitchell RF, Wong JCH, Meier LR, Silliman CA, Graham EE, Striman BL, Robinson KP, Mongold-Diers JA, Millar JG (2014) Seasonal phenology of the cerambycid beetles of east-central Illinois. Ann Entomol Soc Am 107:211–226CrossRefPubMedCentralPubMedGoogle Scholar
  18. Hovore FT (1983) Taxonomic and biological observations on southwestern Cerambycidae (Coleoptera). Coleopt Bull 37:379–387Google Scholar
  19. Imrei Z, Millar JG, Janik G, Tóth M (2013) Field screening of known pheromone components of longhorned beetles in the subfamily Cerambycinae (Coleoptera: Cerambycidae) in Hungary. Z Naturforsch 68c:236–242CrossRefGoogle Scholar
  20. Ishikawa Y, Takanashi KC, Hoshizaki S, Tatsuki S, Huang Y (1999) Ostrinia spp. in Japan: their host plants and sex pheromones. Entomol Exp Appl 91:237–244CrossRefGoogle Scholar
  21. Lacey ES, Ginzel MD, Millar JG, Hanks LM (2004) Male-produced aggregation pheromone of the cerambycid beetle Neoclytus acuminatus acuminatus. J Chem Ecol 30:1493–1507CrossRefPubMedGoogle Scholar
  22. Lacey ES, Moreira JA, Millar JG, Ray AM, Hanks LM (2007) Male-produced aggregation pheromone of the cerambycid beetle Neoclytus mucronatus mucronatus. Entomol Exp Appl 122:171–179CrossRefGoogle Scholar
  23. Lacey ES, Millar JG, Moreira JA, Hanks LM (2009) Male-produced aggregation pheromones of the cerambycid beetles Xylotrechus colonus and Sarosesthes fulminans. J Chem Ecol 35:733–740CrossRefPubMedCentralPubMedGoogle Scholar
  24. Leal WS (1996) Chemical communication in scarab beetles: reciprocal behavioral agonist–antagonist activities of chiral pheromones. Proc Natl Acad Sci U S A 93:12112–12115Google Scholar
  25. Leal WS, Shi X, Nakamuta K, Ono M, Meinwald J (1995) Structure, stereochemistry, and thermal isomerization of the male sex pheromone of the longhorned beetle Anaglyptus subfasciatus. Proc Natl Acad Sci U S A 92:1038–1042CrossRefPubMedCentralPubMedGoogle Scholar
  26. Lemay MA, Silk PJ, Sweeney J (2010) Calling behavior of Tetropium fuscum (Coleoptera: Cerambycidae: Spondylidinae). Can Entomol 142:256–260CrossRefGoogle Scholar
  27. Liendo C, Morillo F, Sánchez P, Muñoz W, Guerra J, Cabrera A, Hernández JV (2005) Olfactory behavior and electroantennographic responses of the cocoa beetle, Steirastoma breve (Coleoptera: Cerambycidae). Fla Entomol 8:117–122CrossRefGoogle Scholar
  28. Lingafelter SW (2007) Illustrated key to the longhorned wood-boring beetles of the eastern United States. Special Publication No. 3. Coleopterists Society, North PotomacGoogle Scholar
  29. Linn CE, Roelofs WL (1995) Pheromone communication in moths and its role in the speciation process. In: Lambert DM, Spencer HG (eds) Speciation and the recognition concept: theory and application. The Johns Hopkins University Press, Baltimore, pp 263–300Google Scholar
  30. Linsley EG (1963) The Cerambycidae of North America, Part IV. Taxonomy and classification of the subfamily Cerambycinae, tribes Elaphidionini through Rhinotragini. University of California Publications in Entomology 21. University of California Press, BerkeleyGoogle Scholar
  31. Linsley EG (1964) The Cerambycidae of North America, Part V. Taxonomy and classification of the subfamily Cerambycinae, tribes Callichromini through Ancylocerini. University of California Publications in Entomology 22. University of California Press, BerkeleyGoogle Scholar
  32. Löfstedt C, Herrebout WM, Menken SBJ (1991) Sex pheromones and their potential role in the evolution of reproductive isolation in small ermine moths (Yponomeutidae). Chemoecology 2:20–28CrossRefGoogle Scholar
  33. Mazor M, Dunkelblum E (2005) Circadian rhythms of sexual behavior and pheromone titers of two closely related moth species Autographa gamma and Cornutiplusia circumflexa. J Chem Ecol 31:2153–2167CrossRefPubMedGoogle Scholar
  34. McElfresh JS, Millar JG, Rubinoff D (2001) (E4, Z9)-Tetradecadienal, a sex pheromone for three North American moth species in the genus Saturnia. J Chem Ecol 27:791–806CrossRefPubMedGoogle Scholar
  35. Millar JG, Hanks LM, Moreira JA, Barbour JD, Lacey ES (2009) Pheromone chemistry of cerambycid beetles. In: Nakamuta K, Millar JG (eds) Chemical ecology of wood-boring insects. Forestry and Forest Products Research Institute, Ibaraki, pp 52–79Google Scholar
  36. Mitchell RF, Graham EE, Wong JCH, Reagel PF, Striman BL, Hughes GP, Paschen MA, Ginzel MD, Millar JG, Hanks LM (2011) Fuscumol and fuscumol acetate are general attractants for many species of cerambycid beetles in the subfamily Lamiinae. Entomol Exp Appl 141:71–77CrossRefGoogle Scholar
  37. Mitchell RF, Hughes DT, Luetje CW, Millar JG, Soriano-Agatón F, Hanks LM, Robertson HM (2012) Sequencing and characterizing odorant receptors of the cerambycid beetle Megacyllene caryae. Insect Biochem Mol Biol 42:499–505CrossRefPubMedCentralPubMedGoogle Scholar
  38. Mitchell RF, Millar JG, Hanks LM (2013) Blends of (R)-3-hydroxyhexan-2-one and alkan-2-ones identified as potential pheromones produced by three species of cerambycid beetles. Chemoecology 23:121–127CrossRefGoogle Scholar
  39. Müller JK, Eggert AK (1987) Effects of carrion-independent pheromone emission by male burying beetles (Silphidae: Necrophorus). Ethology 76:297–304CrossRefGoogle Scholar
  40. Nakamine H, Takeda M (2008) Molecular phylogenetic relationships of flightless beetles belonging to the genus Mesechthistatus Breuning, (Coleoptera: Cerambycidae) inferred from mitochondrial COI gene sequences. J Insect Sci 8:70CrossRefPubMedCentralGoogle Scholar
  41. Pajares JA, Álvarez G, Ibea F, Gallego D, Hall DR, Farman DI (2010) Identification and field activity of a male-produced aggregation pheromone in the pine sawyer beetle, Monochamus galloprovincialis. J Chem Ecol 36:570–583CrossRefPubMedGoogle Scholar
  42. Ray AM, Swift IP, Moreira JA, Millar JG, Hanks LM (2009) (R)-3-hydroxyhexan-2-one is a major pheromone component of Anelaphus inflaticollis (Coleoptera: Cerambycidae. Environ Entomol 38:1462–1466CrossRefPubMedGoogle Scholar
  43. Ray AM, Barbour JD, McElfresh JS, Moreira JA, Swift I, Wright IM, Žunič A, Mitchell RF, Graham EE, Alten RL, Millar JG, Hanks LM (2012) 2,3-Hexanediols as sex attractants and a female-produced sex pheromone for cerambycid beetles in the prionine genus Tragosoma. J Chem Ecol 38:1151–1158CrossRefPubMedGoogle Scholar
  44. SAS Institute Inc (2011) SAS/STAT 9.3 user’s guide. SAS Institute Inc, CaryGoogle Scholar
  45. Schröder F, Fettköther R, Noldt U, Dettner K, König W, Francke W (1994) Synthesis of (3R)-3-hydroxy-2-hexanone, (2R, 3R)-2,3-hexanediol and (2S, 3R)-2,3-hexanediol, the male sex pheromone of Hylotrupes bajulus and Pyrrhidium sanguineum (Cerambycidae). Liebigs Ann Chem 1994:1211–1218CrossRefGoogle Scholar
  46. Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. W. H. Freeman, New YorkGoogle Scholar
  47. Sweeney JD, Silk PJ, Gutowski JM, Wu J, Lemay MA, Mayo PD, Magee DI (2010) Effect of chirality, release rate, and host volatiles on response of Tetropium fuscum (F.), Tetropium cinnamopterum Kirby, and Tetropium castaneum (L.) to the aggregation pheromone, fuscumol. J Chem Ecol 36:1309–1321CrossRefPubMedGoogle Scholar
  48. Teale SA, Wickham JD, Zhang F, Su J, Chen Y, Xiao W, Hanks LM, Millar JG (2011) A male-produced aggregation pheromone of Monochamus alternatus (Coleoptera: Cerambycidae), a major vector of pine wood nematode. J Econ Entomol 104:1592–1598CrossRefPubMedGoogle Scholar
  49. Vidal DM, Fonseca MG, Zarbin PH (2010) Enantioselective synthesis and absolute configuration of the sex pheromone of Hedypathes betulinus (Coleoptera: Cerambycidae). Tetrahedron Lett 51:6704–6706CrossRefGoogle Scholar
  50. Wickham JD, Harrison RD, Lu W, Guo Z, Millar JG, Hanks LM, Chen Y (2014) Generic lures attract cerambycid beetles in a tropical montane rain forest in southern China. J Econ Entomol 107:259–267CrossRefPubMedGoogle Scholar
  51. Wickman BE (1969) A crossbreeding study of the cedar tree borer, Semanotus ligneus amplus, and the fir tree borer, S. litigiosus (Coleoptera: Cerambycidae). Pan Pac Entomol 45:282–285Google Scholar
  52. Yanega D (1996) Field guide to northeastern longhorned beetles (Coleoptera: Cerambycidae). Illinois Natural History Survey, ChampaignGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Robert F. Mitchell
    • 1
    • 4
  • Peter F. Reagel
    • 1
    • 5
  • Joseph C. H. Wong
    • 1
  • Linnea R. Meier
    • 1
  • Weliton Dias Silva
    • 3
  • Judith Mongold-Diers
    • 1
  • Jocelyn G. Millar
    • 2
  • Lawrence M. Hanks
    • 1
  1. 1.Department of EntomologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of EntomologyUniversity of CaliforniaRiversideUSA
  3. 3.Department of Entomology and AcarologyUniversity of São PauloPiracicabaBrazil
  4. 4.Center for Insect Science and Department of NeuroscienceUniversity of ArizonaTucsonUSA
  5. 5.USDA APHIS PPQLaredoUSA

Personalised recommendations